Giải bài tập 4 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức


Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào? A. \(y = - {x^3} + 3{x^2} + 1\). B. \(y = {x^3} - 3{x^2} + 3\). C. \(y = - {x^2} + 2x + 1\). D. \(y = \frac{{x + 1}}{{x - 1}}\).

Đề bài

 

 

Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

A. \(y =  - {x^3} + 3{x^2} + 1\).

B. \(y = {x^3} - 3{x^2} + 3\).

C. \(y =  - {x^2} + 2x + 1\).

D. \(y = \frac{{x + 1}}{{x - 1}}\).

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về dạng của đồ thị hàm số để chọn đáp án.

 

Lời giải chi tiết

Đây là là dạng của đồ thị hàm số bậc ba nên đáp án C, D sai.

Đồ thị hàm số trong hình vẽ đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).

Xét hàm số: \(y = {x^3} - 3{x^2} + 3\) ta có: \(y' = 3{x^2} - 6x,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

Do đó, hàm số \(y = {x^3} - 3{x^2} + 3\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).

Chọn B

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí