Giải bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức


Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là A. 0. B. 1. C. 2. D. 3.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

 

 

Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là

A. 0.

B. 1.

C. 2.

D. 3.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\)

Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty \)

 

Lời giải chi tiết

TXĐ: \(D = \left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} - 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{x}} }}{x} = 1;\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} - 1} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{x}} }}{x} =  - 1\)

Do đó, đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) có hai đường tiệm cận ngang là \(y = 1;y =  - 1\).

Chọn C

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí