Giải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức>
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau: a) \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\) trên đoạn \(\left[ { - 1;2} \right]\); b) \(y = x + \sqrt {1 - {x^2}} \)
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\) trên đoạn \(\left[ { - 1;2} \right]\);
b) \(y = x + \sqrt {1 - {x^2}} \)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).
Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):
1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.
2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).
3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên.
Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)
Lời giải chi tiết
a) Ta có: \(y' = {\left( {\frac{{x + 1}}{{\sqrt {{x^2} + 1} }}} \right)'} = \frac{{\sqrt {{x^2} + 1} - \frac{{2x\left( {x + 1} \right)}}{{2\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}} = \frac{{{x^2} + 1 - {x^2} - x}}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }} = \frac{{1 - x}}{{\sqrt {{{\left( {{x^2} + 1} \right)}^3}} }}\)
\(y' = 0 \Rightarrow x = 1 \in \left[ { - 1;2} \right]\)
Ta có: \(y\left( { - 1} \right) = 0;y\left( 1 \right) = \frac{2}{{\sqrt 2 }}=\sqrt 2 ;y\left( 2 \right) = \frac{3}{{\sqrt 5 }}\)
Do đó, \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} y = y\left( 1 \right) = \sqrt 2 ,\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( { - 1} \right) = 0\)
b) Tập xác định của hàm số là: \(D = \left[ { - 1;1} \right]\)
\(y' = 1 + \frac{{ - x}}{{\sqrt {1 - {x^2}} }},y' = 0 \Leftrightarrow \frac{{\sqrt {1 - {x^2}} - x}}{{\sqrt {1 - {x^2}} }} = 0 \Leftrightarrow \left\{ \begin{array}{l}1 - {x^2} = {x^2}\\ - 1 < x < 1\end{array} \right. \Leftrightarrow x = \pm \frac{{\sqrt 2 }}{2}\)
\(y\left( {\frac{{ - \sqrt 2 }}{2}} \right) = 0;y\left( {\frac{{\sqrt 2 }}{2}} \right) = \sqrt 2 ,y\left( { - 1} \right) = - 1;y\left( 1 \right) = 1\)
Do đó, \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = y\left( {\frac{{\sqrt 2 }}{2}} \right) = \sqrt 2 ,\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( { - 1} \right) = - 1\)
- Giải bài tập 18 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 19 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 20 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 21 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 22 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức