Giải bài tập 19 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức


Tìm hàm số f(x) biết rằng \(f'\left( x \right) = x - \frac{1}{{{x^2}}} + 2\) và \(f\left( 1 \right) = 2\).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

 

 

Tìm hàm số f(x) biết rằng \(f'\left( x \right) = x - \frac{1}{{{x^2}}} + 2\) và \(f\left( 1 \right) = 2\).

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx}  = k\int {f\left( x \right)dx} \)

Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \)

Sử dụng kiến thức về nguyên hàm của hàm số lũy thừa để tính:

\(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\left( {\alpha  \ne  - 1} \right)\)

 

Lời giải chi tiết

Ta có: \(\int {f'\left( x \right)dx}  = \int {\left( {x - \frac{1}{{{x^2}}} + 2} \right)dx}  = \frac{{{x^2}}}{2} + \frac{1}{x} + 2x + C\).

Lại có: \(f\left( 1 \right) = 2\) nên \(\frac{1}{2} + 1 + 2 + C = 2 \Rightarrow C = \frac{{ - 3}}{2}\). Vậy \(f\left( x \right) = \frac{{{x^2}}}{2} + \frac{1}{x} + 2x - \frac{3}{2}\).

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí