-
Giải bài tập 15 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Trong số 40 học sinh lớp 12A, có 22 em đăng kí thi ngành Kinh tế, 25 em đăng kí thi ngành Luật, 3 em không đăng kí cả hai ngành này. Chọn ngẫu nhiên một học sinh, biết rằng em đó đăng kí thi ngành luật. Xác suất để em đó đăng kí thi ngành kinh tế là
A. \(\frac{3}{5}\).
B. \(\frac{2}{5}\).
C. \(\frac{3}{7}\).
D. \(\frac{4}{7}\).
-
Giải bài tập 16 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = {x^3} - 3{x^2}\);
b) \(y = \frac{{2x + 1}}{{x + 2}}\);
c) \(y = \frac{{2{x^2} + x - 2}}{{x - 1}}\).
-
Giải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\) trên đoạn \(\left[ { - 1;2} \right]\);
b) \(y = x + \sqrt {1 - {x^2}} \)
-
Giải bài tập 18 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Khi đạp phanh thì một ô tô chuyển động chậm dần đều với gia tốc \(10m/{s^2}\).
a) Nếu khi bắt đầu đạp phanh ô tô đang chạy với vận tốc 54km/h thì sau bao lâu kể từ khi đạp phanh, ô tô sẽ dừng lại?
b) Nếu ô tô dừng lại trong vòng 20m sau khi đạp phanh thì vận tốc lớn nhất của ô tô ngay trước lúc đạp phanh (tính bằng km/h) có thể là bao nhiêu?
-
Giải bài tập 19 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Tìm hàm số f(x) biết rằng \(f'\left( x \right) = x - \frac{1}{{{x^2}}} + 2\) và \(f\left( 1 \right) = 2\).
-
Giải bài tập 20 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Tính các tích phân sau:
a) \(I = \int\limits_0^2 {\left| {{x^2} - x} \right|dx} \);
b) \(I = \int\limits_0^1 {{{\left( {2x - 1} \right)}^3}dx} \);
c) \(I = \int\limits_0^{\frac{\pi }{4}} {{{\left( {3\sin x - \frac{2}{{{{\cos }^2}x}}} \right)}^3}dx} \);
d) \(I = \int\limits_1^2 {\left( {2{e^x} - \frac{1}{x}} \right)dx} \).
-
Giải bài tập 21 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Tính diện tích hình phẳng giới hạn bởi các đường \(y = {x^2} - 1;y = x + 5,x = - 2,x = 3\).
-
Giải bài tập 22 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Gọi (H) là hình phẳng giới hạn bởi các đường \(y = - {x^2} + 2x;y = 0,x = 0\) và \(x = 2\). Tính thể tích của khối tròn xoay thu được khi quay hình phẳng (H) xung quanh trục Ox.
-
Giải bài tập 23 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Cho tứ diện ABCD, chứng minh rằng:
a) \(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = 0\);
b) Nếu \(AB \bot CD\) và \(AC \bot BD\) thì \(AD \bot BC\).
-
Giải bài tập 24 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi G là trọng tâm của tam giác BC’D’.
a) Chứng minh rằng \(\overrightarrow {AG} = \frac{2}{3}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\).
b) Tính theo a độ dài đoạn thẳng AG.
-
Giải bài tập 25 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
Trong không gian Oxyz, cho điểm \(I\left( { - 1;2;1} \right)\) và mặt phẳng \(\left( P \right):2x - 2y - z - 5 = 0\). Viết phương trình đường thẳng d đi qua I và vuông góc với mặt phẳng (P).
-
Giải bài tập 26 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
Trong không gian Oxyz, cho điểm \(A\left( { - 1;1;2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + t\\y = 3 - 2t\\z = - 1 + 2t\end{array} \right.\).
a) Viết phương trình đường thẳng d’ đi qua A và song song với đường thẳng d.
b) Viết phương trình mặt phẳng (P) chứa điểm A và đường thẳng d.
-
Giải bài tập 27 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 2;3} \right),B\left( {3;0; - 1} \right)\).
a) Viết phương trình mặt phẳng (OAB).
b) Tìm tọa độ trung điểm I của đoạn thẳng AB.
c) Tìm điểm M thuộc mặt phẳng (Oxy) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất.
-
Giải bài tập 29 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
Thu nhập của người lao động trong một công ty được cho trong bảng sau:
Tính khoảng tứ phân vị cho số liệu này.
-
Giải bài tập 30 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
Có hai chuồng gà. Chuồng I có 8 con gà trống và 13 con gà mái. Chuồng II có 10 con gà trống và 6 con gà mái. An bắt ngẫu nhiên một con gà từ chuồng II đem thả vào chuồng I. Sau đó, Bình bắt ngẫu nhiên một con gà từ chuồng I.
Giả sử Bình bắt được con gà mái. Tính xác suất để Bình bắt được con gà mái ở chuồng I.
-
Giải bài tập 31 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
Trong một tuần, Sơn chọn ngẫu nhiên ba ngày chạy bộ buổi sáng. Nếu chạy bộ thì xác suất Sơn ăn thêm 1 quả trứng vào bữa sáng hôm đó là 0,7. Nếu không chạy bộ thì xác suất Sơn ăn thêm một quả trứng vào bữa sáng hôm đó là 0,25. Chọn ngẫu nhiên một ngày trong tuần của Sơn. Tính xác suất để hôm đó Sơn chạy bộ nếu biết rằng sáng hôm đó Sơn có ăn thêm một quả trứng.
-
Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4m; 4,4m; 4,8m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
-
Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức
Thống kê thời gian trong tuần dành cho đọc sách của một số nhân viên trong một công ty được cho trong bảng sau:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là
A. 13.
B. 10.
C. 8.
D. 6.
b) Độ lệch chuẩn của mẫu số liệu ghép nhóm này là (làm tròn kết quả đến hàng phần trăm)
A. 1,99.
B. 2,02.
C. 3,97.
D. 4,09.
-
Giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức
Trong không gian Oxyz, cho điểm \(M\left( {2; - 1;3} \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên Ox, Oy, Oz. Phương trình mặt phẳng (ABC) là
A. \(3x - 6y + 2z + 6 = 0\).
B. \(3x - 6y + 2z + 6 = 0\).
C. \(3x - 2y + 2z - 1 = 0\).
D. \(3x - 6y + 2z - 1 = 0\).
-
Giải bài tập 11 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = 2 - t\\y = 3\\z = - 1 + 2t\end{array} \right.\) và mặt phẳng \(\left( P \right):2x - y - 2z + 1 = 0\). Cosin của góc giữa đường thẳng d và mặt phẳng (P) là
A. \(\frac{{2\sqrt 5 }}{5}\).
B. \(\frac{{\sqrt 5 }}{5}\).
C. \(\frac{{2\sqrt 3 }}{5}\).
D. \(\frac{{\sqrt 3 }}{5}\).
-
Giải bài tập 10 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức
Cho hình hộp ABCD.A’B’C’D’ có tâm O và gọi G là trọng tâm của tam giác BDA’. Tỉ số \(\frac{{AG}}{{AO}}\) bằng
A. \(\frac{1}{3}\).
B. \(\frac{1}{2}\).
C. \(\frac{2}{3}\).
D. \(\frac{3}{4}\).
-
Giải bài tập 9 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức
Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD và M là trung điểm của đoạn thẳng AG. Khi đó \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} \) bằng
A. \(\overrightarrow {MG} \).
B. \(2\overrightarrow {MG} \).
C. \(3\overrightarrow {MG} \).
D. \(4\overrightarrow {MG} \).
-
Giải bài tập 8 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Gọi (H) là hình phẳng giới hạn bởi các đường \(y = 2\sqrt x ,y = 0,x = 0\) và \(x = 4\). Thể tích V của khối tròn xoay sinh ra khi quay hình phẳng (H) quanh trục Ox là
A. \(V = 32\).
B. \(V = 32\pi \).
C. \(V = \frac{{32}}{3}\).
D. \(V = \frac{{32\pi }}{3}\).
-
Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Cho hàm số f(x) liên tục trên \(\mathbb{R}\). Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 1\) và \(x = 4\) như hình bên.
Khẳng định nào dưới đây là đúng?
A. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).
B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \).
C. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).
-
Giải bài tập 6 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Cho hàm số f(x) thỏa mãn: \(f\left( 0 \right) = 1\) và \(f'\left( x \right) = 2\sin x + 1\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} \) bằng
A. \(\frac{{{\pi ^2} + 12\pi - 16}}{8}\).
B. \(\frac{{{\pi ^2} - 4\pi + 16}}{8}\).
C. \(\frac{{{\pi ^2} + 6\pi - 8}}{4}\).
D. \(\frac{{{\pi ^2} - 2\pi + 8}}{4}\).
-
Giải bài tập 5 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Cho hàm số \(f\left( x \right) = {x^2} + 3\). Khẳng định nào dưới đây là đúng?
A. \(\int {f\left( x \right)dx} = 2x + C\).
B. \(\int {f\left( x \right)dx} = {x^2} + 3x + C\).
C. \(\int {f\left( x \right)dx} = {x^3} + 3x + C\).
D. \(\int {f\left( x \right)dx} = \frac{{{x^3}}}{3} + 3x + C\).
-
Giải bài tập 4 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
A. \(y = - {x^3} + 3{x^2} + 1\).
B. \(y = {x^3} - 3{x^2} + 3\).
C. \(y = - {x^2} + 2x + 1\).
D. \(y = \frac{{x + 1}}{{x - 1}}\).
-
Giải bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là
A. 0.
B. 1.
C. 2.
D. 3.
-
Giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là
A. \(M = 6\).
B. \(M = 7\).
C. \(M = \frac{{19}}{3}\).
D. \(M = \frac{{20}}{3}\).
-
Giải bài tập 1 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Khoảng nghịch biến của hàm số \(y = {x^3} - 6{x^2} + 9x + 1\) là:
A. \(\left( { - \infty ;1} \right)\).
B. \(\left( {3; + \infty } \right)\).
C. \(\left( {1;3} \right)\).
D. \(\left( { - \infty ; + \infty } \right)\).