Bài 5.30 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức


Chứng minh rằng giới hạn (mathop {lim }limits_{x to 0} frac{{left| x right|}}{x}) không tồn tại

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Chứng minh rằng giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\left| x \right|}}{x}\) không tồn tại.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dùng định nghĩa của biến hội tụ để chứng minh

Lời giải chi tiết

\(f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\left| x \right|}}{x}\)

Ta lấy hai dãy của biến hội tụ về 0: \(x_n^{\left( 1 \right)} = \frac{1}{n};x_n^{\left( 2 \right)} =  - \frac{1}{n}\;\)

Khi đó: \(\lim f\left( {x_n^{\left( 1 \right)}} \right) = \lim \left( {\frac{{\frac{1}{n}}}{{\frac{1}{n}}}} \right) = 1\)

\(\lim f\left( {x_n^{\left( 2 \right)}} \right) = \lim \left( {\frac{{\frac{1}{n}}}{{ - \frac{1}{n}}}} \right) =  - 1\)

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {x_n^{\left( 1 \right)}} \right) \ne \mathop {\lim }\limits_{x \to  + \infty } \left( {x_n^{\left( 2 \right)}} \right)\)

Vậy không tồn tại \(\mathop {\lim }\limits_{x \to 0} \frac{{\left| x \right|}}{x}\)


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí