Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức


Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{1}{x},;x ne 0}\{1;,;x = 0}end{array}} right.;;)gián đoạn tại (x = 0) b) (gleft( x right) = left{ {begin{array}{*{20}{c}}{1 + x;,;x < 1}\{2 - x;,x ge 1}end{array}} right.;;)gián đoạn tại (x = 1)

Đề bài

Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho

a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{x},\;x \ne 0}\\{1\;,\;x = 0}\end{array}} \right.\;\;\)gián đoạn tại \(x = 0\)

b) \(g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + x\;,\;x < 1}\\{2 - x\;,x \ge 1}\end{array}} \right.\;\;\)gián đoạn tại \(x = 1\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dùng định nghĩa liên tục của hàm số để giải thích

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{1}{x} =  + \infty \)

\(f\left( 0 \right) = 1\)

Vì \(f\left( 0 \right) \ne \mathop {\lim }\limits_{x \to 0} f\left( x \right)\) suy ra hàm số gián đoạn tại \(x = 0\)

b) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x} \right) = 2\)

\(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {2 - x} \right) = 1\)

\(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right)\)

Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\)

Vậy hàm số gián đoạn tại \(x = 1\)


Bình chọn:
3.7 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí