Bài 5.29 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức>
Tính các giới hạn một bên: a) (mathop {lim }limits_{x to {3^ + }} frac{{{x^2} - 9}}{{left| {x - 3} right|}}); b) (mathop {lim }limits_{x to {1^ - }} frac{x}{{sqrt {1 - x} }})
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tính các giới hạn một bên:
a) \(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 9}}{{\left| {x - 3} \right|}}\);
b) \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{x}{{\sqrt {1 - x} }}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dùng tính chất các giới hạn của hàm số để tính.
Lời giải chi tiết
a) \(x \to {3^ + } \Rightarrow x - 3 > 0\)
\(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 9}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 9}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \left( {x + 3} \right) = 6\)
b) \(\mathop {\lim }\limits_{x \to {1^ - }} x = 1\)
\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{\sqrt {1 - x} }} = + \infty \)
\( \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} \frac{x}{{\sqrt {1 - x} }} = + \infty \)
- Bài 5.30 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.32 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.33 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.34 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức