Bài 5.19 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho ({u_n} = frac{{2 + {2^2} + ldots + {2^n}}}{{{2^n}}}). Giới hạn của dãy số (left( {{u_n}} right)) bằng A. 1 B. 2 C. -1 D. 0
Đề bài
Cho \({u_n} = \frac{{2 + {2^2} + \ldots + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số \(\left( {{u_n}} \right)\) bằng
A. 1
B. 2
C. -1
D. 0
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Thu gọn tử thức theo công thức tính tổng của CSN
Sử dụng công thức: \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{a^n}}} = 0\)
Lời giải chi tiết
Ta có: \(2 + {2^2} + ... + {2^n}\) là tổng của n số hạng đầu của cấp số nhân với số hạng đầu là \({u_1} = 2,q = 2\)
Do đó, \(2 + {2^2} + ... + {2^n} = \frac{{2.(1 - {2^n})}}{{1 - 2}} = - 2(1 - {2^n})\)
Khi đó, \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}} = \frac{{ - 2(1 - {2^n})}}{{{2^n}}} = \frac{{{2^n} - 1}}{{{2^{n - 1}}}} = 2 - \frac{1}{{{2^{n - 1}}}}\)
Vậy \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \left( {2 - \frac{1}{{{2^{n - 1}}}}} \right) = 2\)
Đáp án: B.
- Bài 5.20 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.21 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.22 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.23 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.24 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức