Bài 5.34 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức>
Tìm các giá trị của a để hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{x + 1;,x le a}\{{x^2},;a > a}end{array}} right.) liên tục trên (mathbb{R})
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tìm các giá trị của a để hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1\;,x \le a}\\{{x^2},\;a > a}\end{array}} \right.\) liên tục trên \(\mathbb{R}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Hàm số liên tục trên \(\mathbb{R}\) khi f(x) liên tục tại mọi điểm thuộc \(\mathbb{R}\)
Lời giải chi tiết
Ta có:
\(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ - }} \left( {x + 1} \right) = a + 1\)
\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ + }} {x^2} = {a^2}\)
Hàm số liên tục trên \(\mathbb{R}\;\)khi \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right)\)
\( \Leftrightarrow a + 1 = {a^2}\;\)
\( \Leftrightarrow {a^2} - a - 1 = 0\)
\( \Leftrightarrow a = \frac{{1 + \sqrt 5 }}{2}\;,a = \frac{{\left( {1 - \sqrt 5 } \right)}}{2}\)
- Bài 5.33 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.32 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.30 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.29 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức