Bài 4 trang 88 SGK Toán 11 tập 2 – Cánh Diều


Cho tứ diện ABCD có (AB bot (BCD),BC bot CD). Gọi M và N lần lượt là hình chiếu vuông góc của B trên AC và AD. Chứng minh rằng:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành. Tam giác ABC nhọn có trực tâm H là hình chiếu của S trên (ABCD). Chứng minh rằng: 

a) SA \(\bot\) AD;

b) SC \(\bot\) CD.

Phương pháp giải - Xem chi tiết

Dựa vào quan hệ từ vuông góc đến song song trong không gian để chứng minh

Lời giải chi tiết

a) Vì SH \(\bot\) (ABCD) nên AH là hình chiếu của SA trên mặt phẳng (ABCD). Mà AH \(\bot\) BC, AD // BC => AH \(\bot\) AD. Theo định lí ba đường vuông góc ta có SA \(\bot\) AD.

b) Vì SH \(\bot\) (ABCD) nên HC là hình chiếu của SC trên mặt phẳng (ABCD). Mà AB \(\bot\) HC, AB // CD => HC \(\bot\) CD. Theo định lí 3 đường vuông góc ta có SC \(\bot\) CD.


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Bài viết mới nhất

Sự tích hoa sen - Truyện cổ tích

Sự tích hoa dạ lan hương - Truyện cổ tích

Sự tích cây huyết dụ - Truyện cổ tích

Sự tích quả dưa bở - Truyện cổ tích

Sự tích cá chép hóa rồng - Truyện cổ tích

3+ Dẫn chứng về Tư duy đổi mới hay nhất

3+ Dẫn chứng về Hiện tượng fan cuồng hay nhất

3+ Dẫn chứng về Tha thứ hay nhất

3+ Dẫn chứng về Tự do hay nhất

3+ Dẫn chứng về Giữ lời hứa hay nhất