Giải bài 7 trang 79 sách bài tập toán 10 - Chân trời sáng tạo>
Lập phương trình đường tròn trong các trường hợp sau:
Đề bài
Lập phương trình đường tròn trong các trường hợp sau:
a) Có tâm \(I\left( {2;2} \right)\) và bán kính bằng 7
b) Có tâm \(J\left( {0; - 3} \right)\) và đi qua điểm \(M\left( { - 2; - 7} \right)\)
c) Đi qua hai điểm \(A\left( {2;2} \right),B\left( {6;2} \right)\) và có tâm nằm trên đường thẳng \(x - y = 0\)
d) Đi qua gốc tọa độ và cắt hai trục tọa độ tại các điểm có hoành độ là 8, tung độ là 6
Phương pháp giải - Xem chi tiết
Phương trình đường tròn \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) có tâm \(I\left( {a;b} \right)\) và bán kính R
Lời giải chi tiết
a) Có tâm \(I\left( {2;2} \right)\) và bán kính bằng 7
+ Phương trình đường tròn \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 49\)
b) Có tâm \(J\left( {0; - 3} \right)\) và đi qua điểm \(M\left( { - 2; - 7} \right)\)
+ Bán kính \(JM = R = \sqrt {{2^2} + {4^2}} = \sqrt {20} \)
+ Phương trình đường tròn \({x^2} + {\left( {y + 3} \right)^2} = 20\)
c) Đi qua hai điểm \(A\left( {2;2} \right),B\left( {6;2} \right)\) và có tâm nằm trên đường thẳng \(x - y = 0\)
+ Gọi I là tâm đường tròn, \(I \in x - y = 0 \Rightarrow I\left( {t;t} \right)\)
+ \(IA = IB \Leftrightarrow {\left( {t - 2} \right)^2} + {\left( {t - 2} \right)^2} = {\left( {t - 6} \right)^2} + {\left( {t - 2} \right)^2}\)
\(\begin{array}{l} \Leftrightarrow {\left( {t - 2} \right)^2} = {\left( {t - 6} \right)^2} \Leftrightarrow {t^2} - 4t + 4 = {t^2} - 12t + 36\\ \Leftrightarrow 12t - 4t = 36 - 4 \Leftrightarrow 8t = 32 \Rightarrow t = 4\\ \Rightarrow I(4;4);R = IA = 2\sqrt 2 \end{array}\)
+ Phương trình đường tròn \({\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} = 8\)
d) Đi qua gốc tọa độ và cắt hai trục tọa độ tại các điểm có hoành độ là 8, tung độ là 6
+ Gọi tâm đường tròn là \(I\left( {a;b} \right)\), hai điểm A(8;0), B(0;6) là giao của đường tròn với 2 trục tọa độ.
Ta có: \(IO = IA = IB \Leftrightarrow I{O^2} = I{A^2} = I{B^2}\)
\(\begin{array}{l} \Leftrightarrow {a^2} + {b^2} = {\left( {a - 8} \right)^2} + {b^2} = {a^2} + {\left( {b - 6} \right)^2}\\ \Rightarrow \left\{ \begin{array}{l}{a^2} = {\left( {a - 8} \right)^2}\\{b^2} = {\left( {b - 6} \right)^2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 8 - a\\b = 6 - b\end{array} \right.\\ \Rightarrow a = 4;b = 3\end{array}\)
Khi đó \(R = IO = \sqrt {{4^2} + {3^2}} = 5\)
\( \Rightarrow \) Phương trình đường tròn \({\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 25\)
- Giải bài 8 trang 79 sách bài tập toán 10 - Chân trời sáng tạo
- Giải bài 9 trang 79 sách bài tập toán 10 - Chân trời sáng tạo
- Giải bài 10 trang 79 sách bài tập toán 10 - Chân trời sáng tạo
- Giải bài 11 trang 80 sách bài tập toán 10 - Chân trời sáng tạo
- Giải bài 12 trang 80 sách bài tập toán 10 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay