Giải bài 1 trang 77 sách bài tập toán 10 - Chân trời sáng tạo


Góc giữa hai vectơ

Đề bài

Cho hai vectơ \(\overrightarrow a  = \left( {4;3} \right)\) và \(\overrightarrow b  = \left( {1;7} \right)\). Góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là:

A. \({90^ \circ }\)   

B. \({60^ \circ }\) 

C. \({45^ \circ }\) 

D. \({30^ \circ }\)

Phương pháp giải - Xem chi tiết

\(\left( {a;b} \right)\) và \(\left( {c;d} \right)\) là hai vectơ. Góc giữa hai vectơ này được tính qua công thức:  \(cos\varphi  = \frac{{ac + bd}}{{\sqrt {{a^2} + {b^2}} \sqrt {{c^2} + {d^2}} }}\)

Lời giải chi tiết

Ta có: \(cos\varphi  = \frac{{4.1 + 3.7}}{{\sqrt {{4^2} + {3^2}} \sqrt {{1^2} + {7^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \varphi  = {45^ \circ }\)

Chọn C.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí