Giải bài tập Tài liệu Dạy - học Toán lớp 7, Phát triển tư duy đột phá trong dạy học Toán 7
Bài tập - Chủ đề 1: Góc tạo bởi các đường thẳng
Bài tập 13 trang 116 Tài liệu dạy – học Toán 7 tập 1>
Giải bài tập Cho hình 17.
Đề bài
Cho hình 17.

a) Tính số đo \(\widehat {xOm}\) và \(\widehat {x'On}\)
b) Vẽ tia Ot sao cho \(\widehat {xOt}\) và \(\widehat {nOx'}\) là hai góc đối đỉnh. Trên nửa mặt phẳng bờ xx’ chứa tia Ot, vẽ tia Oy sao cho \(\widehat {tOy} = {90^o}\). Hai góc mOn và tOy có là hai góc đối đỉnh không ? Vì sao ?
Lời giải chi tiết

a)Ta có: \(\widehat {xOm} + \widehat {mOn} + \widehat {n0x'} = {180^0}\) (vì góc xOx’ là góc bẹt)
Nên \(4x - {10^0} + {90^0} + 3x - {5^0} = {180^0}.\)
Do đó: \(\eqalign{ & 7x = {180^0} - {90^0} + {10^0} + {5^0} = {105^0}. \cr & \Rightarrow x = {105^0}:7 = {15^0} \cr} \)
Vậy \(\widehat {xOm} = 4x - {10^0} = 4.15 - {10^0} = {50^0}.\)
Và \(\widehat {x'On} = 3x - {5^0} = 3.15 - {5^0} = {40^0}.\)
b) Ta có: góc xOt và nOx’ là hai góc đối đỉnh
=> On và Ot là hai tia đối nhau \( \Rightarrow \widehat {nOt} = {180^0}.\)
Do đó:
\(\eqalign{ & \widehat {n0x'} + \widehat {y0x'} + \widehat {yOt} = {180^0} \cr & \Rightarrow {40^0} + \widehat {y0x'} + {90^0} = {180^0} \Rightarrow \widehat {y0x'} = {180^0} - {90^0} - {40^0} = {50^0} \cr} \)
Ta có: \(\widehat {mOn} + \widehat {n0x'} + \widehat {y0x'} = {90^0} + {40^0} + {50^0} = {180^0}\)
\( \Rightarrow \widehat {mOy} = {180^0} \Rightarrow \) Om và Oy là hai tia đối nhau.
Vậy góc mOn và yOt là hai góc đối đỉnh.
Loigiaihay.com
Các bài khác cùng chuyên mục





Danh sách bình luận