

Bài 20 trang 112 Tài liệu dạy – học Toán 9 tập 2>
Giải bài tập Từ điểm A trên nửa đường tròn (O) đường kính BC, vẽ ra ngài tam giác ABC hai nửa đường tròn
Tổng hợp Đề thi vào 10 có đáp án và lời giải
Toán - Văn - Anh
Đề bài
Từ điểm A trên nửa đường tròn (O) đường kính BC, vẽ ra ngài tam giác ABC hai nửa đường tròn đường kính AB và AC (AB<AC, xem hình vẽ). Chứng minh rằng: diện tích S của tam giác ABC bằng tổng hai diện tích S1 và S2 của hai hình trăng khuyết là phần của hai nửa đường tròn đường kính AB và AC ở ngoài nửa đường tròn đường kính BC.
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính diện tích hình tròn và định lí Pytago.
Lời giải chi tiết
Diện tích nửa hình tròn đường kính AB là \(\pi {\left( {\dfrac{{AB}}{2}} \right)^2} = {S_1} + {S_3} \)
\(\Rightarrow {S_1} = \pi {\left( {\dfrac{{AB}}{2}} \right)^2} - {S_3}\)
Diện tích nửa hình tròn đường kính AC là \(\pi {\left( {\dfrac{{AC}}{2}} \right)^2} = {S_2} + {S_4} \)
\(\Rightarrow {S_3} = \pi {\left( {\dfrac{{AC}}{2}} \right)^2} - {S_4}\)
\(\begin{array}{l} \Rightarrow {S_1} + {S_2} = \pi {\left( {\dfrac{{AB}}{2}} \right)^2} - {S_3} + \pi {\left( {\dfrac{{AC}}{2}} \right)^2} - {S_4} = \pi {\left( {\dfrac{{AB}}{2}} \right)^2} + \pi {\left( {\dfrac{{AC}}{2}} \right)^2} - \left( {{S_3} + {S_4}} \right)\\ \Rightarrow {S_1} + {S_2} = \dfrac{\pi }{4}\left( {A{B^2} + A{C^2}} \right) - \left( {{S_3} + {S_4}} \right)\end{array}\)
Diện tích nửa hình tròn đường kính BC là \(\pi {\left( {\dfrac{{BC}}{2}} \right)^2} = {S_3} + {S_4} + S \Rightarrow S = \pi {\left( {\dfrac{{BC}}{2}} \right)^2} - \left( {{S_3} + {S_4}} \right)\)
Vì \(\widehat {BAC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta ABC\) vuông tại A.
Áp dụng định lí Pytago ta có: \(B{C^2} = A{B^2} + A{C^2}\)
\( \Rightarrow {S_1} + {S_2} = \dfrac{\pi }{4}.B{C^2} - \left( {{S_3} + {S_4}} \right) = \dfrac{\pi }{4}{\left( {\dfrac{{BC}}{2}} \right)^2} - \left( {{S_3} + {S_4}} \right) = S\).
Vậy \(S = {S_1} + {S_2}\).
Loigiaihay.com


- Bài 19 trang 112 Tài liệu dạy – học Toán 9 tập 2
- Bài 18 trang 112 Tài liệu dạy – học Toán 9 tập 2
- Bài 17 trang 112 Tài liệu dạy – học Toán 9 tập 2
- Bài 16 trang 112 Tài liệu dạy – học Toán 9 tập 2
- Bài 15 trang 112 Tài liệu dạy – học Toán 9 tập 2
>> Xem thêm