 Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
                                                
                            Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
                         Bài 2. Cực trị của hàm số
                                                        Bài 2. Cực trị của hàm số
                                                    Bài 15 trang 17 SGK Đại số và Giải tích 12 Nâng cao>
Chứng minh rằng với mọi giá trị của m, hàm số luôn có cực đại và cực tiểu
Đề bài
Chứng minh rằng với mọi giá trị của \(m\), hàm số: \(y = {{{x^2} - m\left( {m + 1} \right)x + {m^3} + 1} \over {x - m}}\) luôn có cực đại và cực tiểu.
Lời giải chi tiết
TXĐ: \(D = {\mathbb{R}}\backslash \left\{ m \right\}\)

Với mọi giá trị của \(m\), hàm số đạt cực đại tại điểm \(x=m-1\) và đạt cực tiểu tại điểm \(x=m+1\)
Chú ý:
Ta có thể viết lại hàm số f(x) để tính đạo hàm cho đơn giản như sau:
\(\begin{array}{l}
y = \frac{{{x^2} - m\left( {m + 1} \right)x + {m^3} + 1}}{{x - m}}\\
 = \frac{{{x^2} - {m^2}x - mx + {m^3} + 1}}{{x - m}}\\
 = \frac{{\left( {{x^2} - mx} \right) - \left( {{m^2}x - {m^3}} \right) + 1}}{{x - m}}\\
 = \frac{{x\left( {x - m} \right) - {m^2}\left( {x - m} \right) + 1}}{{x - m}}\\
 = \frac{{x\left( {x - m} \right)}}{{x - m}} - \frac{{{m^2}\left( {x - m} \right)}}{{x - m}} + \frac{1}{{x - m}}\\
 = x - {m^2} + \frac{1}{{x - m}}\\
y' = \left( {x - {m^2} + \frac{1}{{x - m}}} \right)'\\
 = 1 - 0 - \frac{1}{{{{\left( {x - m} \right)}^2}}}\\
 = 1 - \frac{1}{{{{\left( {x - m} \right)}^2}}}\\
y' = 0 \Leftrightarrow 1 - \frac{1}{{{{\left( {x - m} \right)}^2}}} = 0\\
 \Leftrightarrow 1 = \frac{1}{{{{\left( {x - m} \right)}^2}}} \Leftrightarrow {\left( {x - m} \right)^2} = 1\\
 \Leftrightarrow \left[ \begin{array}{l}
x - m = 1\\
x - m = - 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = m + 1\\
x = m - 1
\end{array} \right.
\end{array}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            