Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 2. Cực trị của hàm số
Bài 14 trang 17 SGK Đại số và Giải tích 12 Nâng cao>
Xác định các hệ số a,b, c sao cho hàm số đạt cực trị bằng 0
Đề bài
Xác định các hệ số \(a,b, c\) sao cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) đạt cực trị bằng \(0\) tại điểm \(x=-2\) và đồ thị của hàm số đi qua điểm \(A\left( {1;0} \right)\).
Phương pháp giải - Xem chi tiết
- Sử dụng các điều kiện bài cho lập hệ phương trình ẩn a, b. c.
- Giải hệ tìm a, b, c và kết luận.
Chú ý:
+) \(f\) đạt cực trị tại điểm \(x=-2\) nên \(f'\left( { - 2} \right) = 0\)
+) f(-2)=0
+) Đồ thị hàm số đi qua điểm \(A\left( {1;0} \right)\) nên: \(f\left( 1 \right) = 0 \)
Lời giải chi tiết
\(f'\left( x \right) = 3{x^2} + 2ax + b\)
\(f\) đạt cực trị tại điểm \(x=-2\) nên \(f'\left( { - 2} \right) = 0\)
\( \Rightarrow 3.{\left( { - 2} \right)^2} + 2a.\left( { - 2} \right) + b = 0\)
\( \Rightarrow \)\(\,12 - 4a + b = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
\(f\left( { - 2} \right) = 0 \) \( \Rightarrow {\left( { - 2} \right)^3} + a.{\left( { - 2} \right)^2} + b.\left( { - 2} \right) + c = 0\)
\(\Rightarrow - 8 + 4a - 2b + c = 0\,\,\,\,\left( 2 \right)\)
Đồ thị hàm số đi qua điểm \(A\left( {1;0} \right)\) nên: \(f\left( 1 \right) = 0 \Rightarrow 1 + a + b + c = 0\,\,\,\,\,\,\,\,\,\left( 3 \right)\)
Từ (1), (2), (3) ta có hệ phương trình:
\(\left\{ \matrix{
4a - b = 12 \hfill \cr
4a - 2b + c = 8 \hfill \cr
a + b + c = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 3 \hfill \cr
b = 0 \hfill \cr
c = - 4 \hfill \cr} \right.\)
Vậy \(a=3, b=0, c=-4\).
Thử lại,
Xét f(x) = x3+3x2-4.
Ta có đồ thị hàm số f(x) đi qua A(1; 0) vì \({1^3} + {3.1^2} - 4 = 0\)
f’(x) = 3x2+6x ⇒ f'' (x)=6x+6
f’(-2)= 0; f’’(2) = -6 < 0 nên x = -2 là điểm cực đại và f(-2) = 0
Đáp số: a =3; b =0; c = -4.
Loigiaihay.com




