Giải mục 1 trang 6,7 SGK Toán 12 tập 2 - Chân trời sáng tạo>
Khái niệm nguyên hàm
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
KP1
Trả lời câu hỏi Khám phá 1 trang 6 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(f\left( x \right) = 2x\) xác định trên \(\mathbb{R}\). Tìm một hàm số \(F\left( x \right)\) sao cho \(F'\left( x \right) = f\left( x \right)\).
Phương pháp giải:
Sử dụng các công thức đạo hàm được học ở lớp 11 để tìm một hàm số có đạo hàm là \(2x\).
Lời giải chi tiết:
Ta có \(\left( {{x^2}} \right)' = 2x\), nên \(F\left( x \right) = {x^2}\) là một hàm số cần tìm.
KP2
Trả lời câu hỏi Khám phá 2 trang 6 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(f\left( x \right) = 3{x^2}\) xác định trên \(\mathbb{R}\).
a) Chứng minh rằng \(F\left( x \right) = {x^3}\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).
b) Với \(C\) là hằng số tuỳ ý, hàm số \(H\left( x \right) = F\left( x \right) + C\) có là nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) không?
c) Giả sử \(G\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\). Tìm đạo hàm của hàm số \(G\left( x \right) - F\left( x \right)\). Từ đó, có nhận xét gì về hàm số \(G\left( x \right) - F\left( x \right)\)?
Phương pháp giải:
a) Để chứng minh \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\), ta cần chỉ ra rằng \(F'\left( x \right) = f\left( x \right)\).
b) Để kiểm tra hàm số \(H\left( x \right)\) có là một nguyên hàm của \(f\left( x \right)\) hay không, ta cần tính đạo hàm \(H'\left( x \right)\) và so sánh với \(f\left( x \right)\).
c) Tính đạo hàm \(\left[ {G\left( x \right) - F\left( x \right)} \right]'\) và rút ra kết luận.
Lời giải chi tiết:
a) Ta có \(F'\left( x \right) = 3{x^2} = f\left( x \right)\), nên \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).
b) Ta có \(H'\left( x \right) = \left[ {F\left( x \right) + C} \right]' = F'\left( x \right) + C' = f\left( x \right)\) (do \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\)), nên \(H\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).
c) Do \(G\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\), ta có \(G'\left( x \right) = f\left( x \right)\).
Ta có \(\left[ {G\left( x \right) - F\left( x \right)} \right]' = G'\left( x \right) - F'\left( x \right) = f\left( x \right) - f\left( x \right) = 0\).
Vậy đạo hàm của hàm số \(G\left( x \right) - F\left( x \right)\) bằng 0, tức là \(G\left( x \right) - F\left( x \right)\) là một hằng số (do đạo hàm của một hằng số thì bằng 0).
TH1
Trả lời câu hỏi Thực hành 1 trang 7 SGK Toán 12 Chân trời sáng tạo
Chứng minh rằng \(F\left( x \right) = {e^{2x + 1}}\) là một nguyên hàm của hàm số \(f\left( x \right) = 2{e^{2x + 1}}\) trên \(\mathbb{R}\).
Phương pháp giải:
Tính đạo hàm \(F'\left( x \right)\) và so sánh với \(f\left( x \right)\).
Lời giải chi tiết:
Ta có \(F'\left( x \right) = \left( {{e^{2x + 1}}} \right)' = 2{e^{2x + 1}} = f\left( x \right)\), nên \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\).
- Giải mục 2 trang 8,9 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải mục 3 trang 10,11 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 1 trang 11 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 2 trang 11 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 3 trang 11 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo