Giải câu hỏi mở đầu trang 61 SGK Toán 12 tập 2 - Chân trời sáng tạo


Ta đã biết trong mặt phẳng tọa độ Oxy, phương trình đường tròn tâm I(a;b), bán kính R có dạng:

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Ta đã biết trong mặt phẳng tọa độ Oxy, phương trình đường tròn tâm I(a;b), bán kính R có dạng:

\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\).

Trong không gian Oxyz, phương trình mặt cầu có dạng như thế nào?

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức đã học.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Trong không gian Oxyz, mặt cầu (S) tâm I(a;b;c), bán kính R có phương trình là:

\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 1 trang 61, 62, 63 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong không gian (Oxyz), cho mặt cầu (Sleft( {I;R} right)) có tâm (Ileft( {a;b;c} right)) và bán kính (R). Xét một điểm (Mleft( {x;y;z} right)) thay đổi. a) Tính khoảng cách (IM) theo (x), (y), (z) và (a), (b), (c). b) Nêu điều kiện cần và đủ của (x), (y), (z) để điểm (Mleft( {x;y;z} right)) nằm trên mặt cầu (Sleft( {I;R} right)).

  • Giải mục 2 trang 63, 64 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Bề mặt của một bóng thám không dạng hình cầu có phương trình ({x^2} + {y^2} + {z^2} - 200x - 600y - {rm{4 000}}z + {rm{4 099 900}} = 0). Tìm toạ độ tâm và bán kính mặt cầu.

  • Giải bài tập 1 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Viết phương trình mặt cầu (left( S right)): a) Có tâm (Ileft( {7; - 3;0} right)), bán kính (R = 8). b) Có tâm (Mleft( {3;1; - 4} right)) và đi qua điểm (Nleft( {1;0;1} right)). c) Có đường kính (AB) với (Aleft( {4;6;8} right)) và (Bleft( {2;4;4} right)).

  • Giải bài tập 2 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó. a) ({x^2} + {y^2} + {z^2} + 5x - 7y + z - 1 = 0). b) ({x^2} + {y^2} + {z^2} + 4x + 6y - 2z + 100 = 0). c) ({x^2} + {y^2} + {z^2} - x - y - z + frac{1}{2} = 0).

  • Giải bài tập 3 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho hai điểm (Aleft( {1;0;0} right)) và (Bleft( {5;0;0} right)). Chứng minh rằng nếu điểm (Mleft( {x;y;z} right)) thoả mãn (overrightarrow {MA} .overrightarrow {MB} = 0) thì (M) thuộc một mặt cầu (left( S right)). Tìm tâm và bán kính của (left( S right)).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí