Bài 3. Ứng dụng hình học của tích phân - Toán 12 Chân trời sáng tạo

Bình chọn:
4 trên 33 phiếu
Lý thuyết Ứng dụng hình học của tích phân

1.Tính diện tích hình phẳng a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b

Xem chi tiết

Câu hỏi mục 1 trang 21, 22, 23

Tính diện tích hình phẳng

Xem chi tiết

Câu hỏi mục 2 trang 24,25,26

Tính thể tích hình khối

Xem chi tiết

Bài 1 trang 27

Tính diện tích hình phẳng giới hạn bởi a) Đồ thị của hàm số (y = {e^x}), trục hoành và hai đường thẳng (x = - 1), (x = 1). b) Đồ thị của hàm số (y = x + frac{1}{x}), trục hoành và hai đường thẳng (x = 1), (x = 2).

Xem chi tiết

Bài 2 trang 27

Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số (y = {x^3} - x), trục hoành và hai đường thẳng (x = 0), (x = 2).

Xem chi tiết

Bài 3 trang 27

Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số (y = frac{{{x^2} + 1}}{x}), (y = - x) và hai đường thẳng (x = 1), (x = 4).

Xem chi tiết

Bài 4 trang 27

Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số (y = {x^3} + 1), (y = 2) và hai đường thẳng (x = - 1), (x = 2).

Xem chi tiết

Bài 5 trang 27

Khi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục (Ox) tại điểm có hoành độ (x) (left( { - 2 le x le 2} right)), mặt cắt là tam giác vuông có một góc ({45^o}) và độ dài một cạnh góc vuông là (sqrt {4 - {x^2}} ) (dm). Tính thể tích của vật thể.

Xem chi tiết

Bài 6 trang 27

Cho (D) là hình phẳng giới hạn bởi đồ thị hàm số (y = sqrt {4 - x} ) (left( {x le 4} right)), trục tung và trục hoành (hình dưới đây). Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục (Ox).

Xem chi tiết

Bài 7 trang 27

Trong mặt phẳng toạ độ (Oxy), cho hình thang (OABC) có (Aleft( {0;1} right)), (Bleft( {2;2} right)) và (Cleft( {2;0} right)) (hình dưới đây). Tính thể tích khối tròn xoay tạo thành khi quay hình thang (OABC) quanh trục (Ox).

Xem chi tiết

Bài 8 trang 27

Sử dụng tích phân, tính thể tích của hình chóp tứ giác đều có cạnh đáy bằng (a) và chiều cao bằng (h).

Xem chi tiết