Giải bài tập 3 trang 50 SGK Toán 12 tập 1 - Chân trời sáng tạo>
Ba lực có điểm đặt tại một đỉnh của hình lập phương, cùng phương với ba cạnh và cùng có cường độ là 5N. Tính cường độ của hợp lực.
Đề bài
Ba lực có điểm đặt tại một đỉnh của hình lập phương, cùng phương với ba cạnh và cùng có cường độ là 5N. Tính cường độ của hợp lực.
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc hình hộp
Lời giải chi tiết
Vecto hợp lực là: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_4}} \)
Cường độ của hợp lực là: \({F_4} = \sqrt {{F_{12}}^2 + F_3^2} = \sqrt {{{({F_1}^2 + F_2^2)}^2} + F_3^2} = \sqrt {{5^2} + {5^2} + {5^2}} = 5\sqrt 3 N\)
- Giải bài tập 4 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 5 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 6 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 7 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 8 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo