Giải bài 94 trang 41 sách bài tập toán 12 - Cánh diều


Đồ thị hàm số nào sau đây nhận đường thẳng (y = - 2) làm tiệm cận ngang? A. (y = frac{{2{rm{x}} - 1}}{{ - 1 + x}}). B. (y = frac{{ - x + 1}}{{2{rm{x}} - 1}}). C. (y = frac{{x + 1}}{{x + 2}}). D. (y = frac{{ - 2{rm{x + }}1}}{{x - 3}}).

Đề bài

Đồ thị hàm số nào sau đây nhận đường thẳng \(y =  - 2\) làm tiệm cận ngang?

A. \(y = \frac{{2{\rm{x}} - 1}}{{ - 1 + x}}\).                    

B. \(y = \frac{{ - x + 1}}{{2{\rm{x}} - 1}}\).

C. \(y = \frac{{x + 1}}{{x + 2}}\).                                   

D. \(y = \frac{{ - 2{\rm{x + }}1}}{{x - 3}}\).

Phương pháp giải - Xem chi tiết

Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

Xét hàm số \(y = \frac{{ - 2{\rm{x + }}1}}{{x - 3}}\). Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 3 \right\}\).

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 2{\rm{x + }}1}}{{x - 3}} =  - 2;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 2{\rm{x + }}1}}{{x - 3}} =  - 2\)

Vậy \(y =  - 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

Chọn D.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 95 trang 41 sách bài tập toán 12 - Cánh diều

    Tiệm cận xiên của đồ thị hàm số (y = frac{{3{{rm{x}}^2} + x - 2}}{{x - 2}}) là đường thẳng: A. (y = - 3{rm{x}} + 7). B. (y = 3{rm{x}} + 7). C. (y = 3{rm{x}} - 7). D. (y = - 3{rm{x}} - 7).

  • Giải bài 96 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 27 là đồ thị của hàm số: A. \(y = 2{{\rm{x}}^3} + 2\). B. \(y = {x^3} - {x^2} + 2\). C. \(y = - {x^3} + 3{\rm{x}} + 2\). D. \(y = {x^3} + x + 2\).

  • Giải bài 97 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 28 là đồ thị của hàm số: A. \(y = \frac{{ - 2{\rm{x}} + 1}}{{{\rm{x}} + 1}}\). B. \(y = \frac{{{\rm{x}} + 1}}{{ - x - 2}}\). C. \(y = \frac{{ - {\rm{x}} + 1}}{{x + 2}}\). D. \(y = \frac{{x - 2}}{{x + 2}}\).

  • Giải bài 98 trang 42 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 29 là đồ thị của hàm số: A. (y = frac{{{x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). B. (y = frac{{ - {x^2} + 2{rm{x}} + 2}}{{{rm{x}} + 1}}). C. (y = frac{{ - {x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). D. (y = frac{{ - {x^2} + {rm{x}} - 2}}{{{rm{x}} - 1}}).

  • Giải bài 99 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = x.{e^x}). a) (y' = {e^x} + x.{e^x}). b) (y' = 0) khi (x = - 1,x = 0). c) (y' > 0) khi (x in left( { - 1; + infty } right)) và (y' < 0) khi (x in left( { - infty ; - 1} right)). d) Hàm số đạt cực đại tại (x = - 1).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí