Giải bài 85 trang 39 sách bài tập toán 12 - Cánh diều


Trong các hàm số sau, hàm số nghịch biến trên (mathbb{R}) là: A. (y = {e^{ - x + 2}}). B. (y = {log _{frac{1}{2}}}left( {{x^2} + 1} right)). C. (y = - {x^3} + 2{{rm{x}}^2} + 1). D. (y = - x + 1 + frac{1}{x}).

Đề bài

Trong các hàm số sau, hàm số nghịch biến trên \(\mathbb{R}\) là:

A. \(y = {e^{ - x + 2}}\)                                             

B. \(y = {\log _{\frac{1}{2}}}\left( {{x^2} + 1} \right)\)

C. \(y =  - {x^3} + 2{{\rm{x}}^2} + 1\)                      

D. \(y =  - x + 1 + \frac{1}{x}\)

Phương pháp giải - Xem chi tiết

Hàm số nghịch biến trên \(\mathbb{R}\) tức là hàm số có \(y' \le 0,\forall x \in \mathbb{R}\).

Lời giải chi tiết

+ Đáp án A: Hàm số có tập xác định là \(\mathbb{R}\).

Hàm số có \(y' = {\left( { - x + 2} \right)^\prime }{e^{ - x + 2}} =  - {e^{ - x + 2}} < 0,\forall x \in \mathbb{R}\). Vậy A đúng.

+ Đáp án B: Hàm số có tập xác định là \(\mathbb{R}\).

Hàm số có \(y' =  - 3{x^2} + 4{\rm{x}}\).

\(y' = 0 \Leftrightarrow x = 0\) hoặc \(x = \frac{4}{3}\). Vậy hàm số không nghịch biến trên \(\mathbb{R}\). Vậy C sai.

+ Đáp án C: Hàm số có tập xác định là \(\mathbb{R}\).

Hàm số có \(y' = \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{\left( {{x^2} + 1} \right).\ln \frac{1}{2}}} =  - \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right).\ln 2}}\).

\(y' = 0 \Leftrightarrow x = 0\). Vậy hàm số không nghịch biến trên \(\mathbb{R}\). Vậy B sai.

+ Đáp án D: Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\). Vậy hàm số không nghịch biến trên \(\mathbb{R}\). Vậy D sai.

Chọn A.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 86 trang 39 sách bài tập toán 12 - Cánh diều

    Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị là đường cong như Hình 25. Hàm số đã cho đồng biến trên khoảng nào dưới đây? A. \(\left( { - \infty ;3} \right)\). B. \(\left( {1; + \infty } \right)\). C. \(\left( { - 1; + \infty } \right)\). D. \(\left( { - 1;1} \right)\).

  • Giải bài 87 trang 40 sách bài tập toán 12 - Cánh diều

    Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}) và có bảng biến thiên như sau: Số điểm cực trị của hàm số là: A. 0. B. 1. C. 2. D. 3.

  • Giải bài 88 trang 40 sách bài tập toán 12 - Cánh diều

    Cho hàm số (fleft( x right)) có đạo hàm (f'left( x right) = {x^2}{left( {x + 1} right)^2}left( {x - 1} right)left( {x + 2} right),forall x in mathbb{R}). Điểm cực đại của hàm số đã cho là: A. ‒1. B. ‒2. C. 2. D. 1.

  • Giải bài 89 trang 40 sách bài tập toán 12 - Cánh diều

    Cho hàm số \(y = \frac{{a{x^2} + b{\rm{x}} + c}}{{m{\rm{x}} + n}}\) (với \(a,m \ne 0\)) có đồ thị là đường cong như Hình 26. Giá trị cực đại của hàm số là: A. 0. B. ‒1. C. 2. D. 3.

  • Giải bài 90 trang 40 sách bài tập toán 12 - Cánh diều

    Giá trị nhỏ nhất của hàm số (y = frac{{2{rm{x}} + 1}}{{1 - x}}) trên đoạn (left[ {2;3} right]) bằng: A. ‒5. B. ‒2. C. 0. D. 1.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí