Giải bài 83 trang 53 sách bài tập toán 11 - Cánh diều


Nghiệm của phương trình \({\log _5}\left( {2x - 3} \right) - {\log _{\frac{1}{5}}}\left( {2x - 3} \right) = 0\) là:

Đề bài

Nghiệm của phương trình \({\log _5}\left( {2x - 3} \right) - {\log _{\frac{1}{5}}}\left( {2x - 3} \right) = 0\) là:

A. \(x = \frac{3}{2}.\)

B. \(x = 8.\)

C. \(x = 2.\)

D. \(x = 1.\)

Phương pháp giải - Xem chi tiết

Với \(a > 0,{\rm{ }}a \ne 1\) thì \({\log _a}x = b \Leftrightarrow x = {a^b}.\)

Lời giải chi tiết

\(\begin{array}{l}{\log _5}\left( {2x - 3} \right) - {\log _{\frac{1}{5}}}\left( {2x - 3} \right) = 0 \Leftrightarrow {\log _5}\left( {2x - 3} \right) + {\log _5}\left( {2x - 3} \right) = 0\\ \Leftrightarrow 2{\log _5}\left( {2x - 3} \right) = 0 \Leftrightarrow {\log _5}\left( {2x - 3} \right) = 0 \Leftrightarrow 2x - 3 = 1 \Leftrightarrow x = 2.\end{array}\)

Đáp án C.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí