Giải bài 7 trang 90 sách bài tập toán 8 - Cánh diều


Góc kề bù với một góc của tứ giác được gọi là góc ngoài của tứ giác. Chứng minh tổng các góc ngoài của tứ giác \(ABCD\) ở Hình 7 (tại mỗi đỉnh chỉ nhọn một góc ngoài):

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Góc kề bù với một góc của tứ giác được gọi là góc ngoài của tứ giác. Chứng minh tổng các góc ngoài của tứ giác \(ABCD\) ở Hình 7 (tại mỗi đỉnh chỉ nhọn một góc ngoài):

\(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}} = 360^\circ \).

 

Phương pháp giải - Xem chi tiết

Dựa vào tính chất tổng các góc trong một tứ giác bằng \(360^\circ \) để chứng minh.

Lời giải chi tiết

Trong tứ giác \(ABCD\), ta có: \(\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {CDA} = 360^\circ \)

Ta có: \(\widehat {DAB} + \widehat {{A_1}} = \widehat {ABC} + \widehat {{B_1}} = \widehat {BCD} + \widehat {{C_1}} = \widehat {CDA} + \widehat {{D_1}} = 180^\circ \) (các cặp góc kề bù)

Suy ra \(\left( {180^\circ  - \widehat {{A_1}}} \right) + \left( {180^\circ  - \widehat {{B_1}}} \right) + \left( {180^\circ  - \widehat {{C_1}}} \right) + \left( {180^\circ  - \widehat {{D_1}}} \right) = 360^\circ \)

Hay \(720^\circ  - \left( {\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}} \right) = 360^\circ \). Vậy \(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}} = 360^\circ \).


Bình chọn:
3.8 trên 6 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí