Giải bài 4 trang 33 sách bài tập toán 8 - Cánh diều>
Rút gọn mỗi phân thức sau:
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Rút gọn mỗi phân thức sau:
a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\)
b) \(\frac{{x - y}}{{y - x}}\)
c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\)
d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\)
Phương pháp giải - Xem chi tiết
Muốn rút gọn một phân thức ta có thể làm như sau:
Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần)
Bước 2: tìm nhân tử chung của tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung.
Lời giải chi tiết
a) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)
Ta có: \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}} = \frac{{5.5{x^2}{y^3}}}{{5.7{x^3}{x^2}}} = \frac{{5y}}{{7x}}\)
b) Điều kiện xác định của phân thức là \(y - x \ne 0\)
Ta có: \(\frac{{x - y}}{{y - x}} = \frac{{ - \left( {y - x} \right)}}{{y - x}} = - 1\)
c) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)
Ta có: \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}} = \frac{{\left( { - 1} \right).{x^5}{y^2}}}{{\left( { - 1} \right).{x^2}{y^3}}} = \frac{{{x^3}}}{y}\)
d) Điều kiện xác định của phân thức là \({x^3} - 4{x^2} + 4x \ne 0\)
Ta có: \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}} = \frac{{x\left( {x - 2} \right)}}{{x\left( {{x^2} - 4x + 4} \right)}} = \frac{{x\left( {x - 2} \right)}}{{x{{\left( {x - 2} \right)}^2}}} = \frac{1}{{x - 2}}\)
- Giải bài 5 trang 33 sách bài tập toán 8 - Cánh diều
- Giải bài 6 trang 34 sách bài tập toán 8 - Cánh diều
- Giải bài 7 trang 34 sách bài tập toán 8 - Cánh diều
- Giải bài 8 trang 34 sách bài tập toán 8 - Cánh diều
- Giải bài 3 trang 33 sách bài tập toán 8 - Cánh diều
>> Xem thêm