Giải bài 1.61 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Xét tính tuần hoàn của các hàm số sau:

Đề bài

Xét tính tuần hoàn của các hàm số sau:

a) \(y = \sin \frac{x}{2} + \cos 3x\);                     

b) \(y = \cos 5x + \tan \frac{x}{3}\).

Phương pháp giải - Xem chi tiết

Bước 1: Tập xác định D.

Bước 2: Chứng minh rằng với mọi \(x \in D\), \(x + T \in D\)và \(f(x + T) = f(x)\).

Lời giải chi tiết

a) Hàm số \(f(x) = \sin \frac{x}{2} + \cos 3x\) có tập xác định D

Hàm số \(\sin \frac{x}{2}\) tuần hoàn với chu kì \({T_1} = \frac{{2\pi }}{{1/2}} = 4\pi \).

Hàm số \(\cos 3x\) tuần hoàn với chu kì \({T_2} = \frac{{2\pi }}{3}\).

Ta thấy \(4\pi  = 6.\frac{{2\pi }}{3}\). Vậy ta xét sự tuần hoàn của hàm số như sau:

\(\begin{array}{l}f(x + 4\pi ) = \sin \frac{{x + 4\pi }}{2} + \cos 3(x + 4\pi )\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sin \left( {x + 2\pi } \right) + \cos (3x + 12\pi )\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sin \frac{x}{2} + \cos 3x = f(x)\end{array}\)

Vậy hàm số tuần hoàn với chu kì \(4\pi \).

b) Hàm số \(y = \cos 5x + \tan \frac{x}{3}\) có tập xác định D

Hàm số \(\tan \frac{x}{3}\) tuần hoàn với chu kì \({T_1} = \frac{\pi }{{1/3}} = 3\pi \).

Hàm số \(\cos 5x\) tuần hoàn với chu kì \({T_2} = \frac{{2\pi }}{5}\).

Ta thấy \(6\pi  = 3.\frac{{2\pi }}{5}.5\). Vậy ta xét sự tuần hoàn của hàm số như sau:

\(\begin{array}{l}f(x + 6\pi ) = y = \cos 5\left( {x + 6\pi } \right) + \tan \frac{{x + 6\pi }}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \cos \left( {5x + 30\pi } \right) + \tan \left( {\frac{x}{3} + 2\pi } \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \cos 5x + \tan \frac{x}{3} = f(x)\end{array}\)

Vậy hàm số tuần hoàn với chu kì \(6\pi \).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí