Giải bài 1.57 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống>
Hai sóng âm có phương trình lần lượt là
Đề bài
Hai sóng âm có phương trình lần lượt là
\({f_1}\left( t \right) = C\sin \omega t\) và \({f_2}\left( t \right) = C\sin \left( {\omega t + \alpha } \right)\).
Hai sóng này giao thoa với nhau tạo ra một âm kết hợp có phương trình
\(f(t) = {f_1}\left( t \right) + {f_2}\left( t \right) = C\sin \omega t + C\sin \left( {\omega t + \alpha } \right)\).
a) Sử dụng công thức cộng chỉ ra rằng hàm số f (t) có thể viết được dưới dạng \(f(t) = {\rm{A}}\sin \omega t + {\rm{B}}\cos \omega t\), ở đó A, B là hai hằng số phụ thuộc vào \(\alpha \).
b) Khi \(C = 10\) và \(\alpha = \frac{\pi }{3}\), hãy tìm biên độ và pha ban đầu của sóng âm kết hợp, tức là tìm hai hằng số \(k\) và \(\varphi \) sao cho \(f(t) = k\sin \left( {\omega t + \varphi } \right)\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức cộng và công thức biến tổng thành tích, biến đổi về dạng đề bài yêu cầu.
Lời giải chi tiết
a) Ta có
\(\begin{array}{l}f(t) = {f_1}\left( t \right) + {f_2}\left( t \right)\\ = C\sin \omega t + C\sin \left( {\omega t + \alpha } \right) = C\left( {\sin \omega t + \sin \left( {\omega t + \alpha } \right)} \right)\\ = C\left( {\sin \omega t + \sin \omega t.\cos \alpha + \cos \omega t.\sin \alpha } \right)\\ = C\sin \omega t(1 + \cos \alpha ) + C.\sin \alpha .\cos \omega t\\ = A\sin \omega t + B\cos \omega t\end{array}\)
Vậy \(f(t) = A\sin \omega t + B\cos \omega t\) với \(A = C(1 + \cos \alpha )\); \(B = C\sin \alpha \).
b) Ta có
\(\begin{array}{l}f(t) = C\sin \omega t + C\sin \left( {\omega t + \alpha } \right) = C\left( {2\sin \frac{{\omega t + \omega t + \alpha }}{2}\cos \frac{{\omega t - \left( {\omega t + \alpha } \right)}}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\, = C.2\sin \frac{{2\omega t + \alpha }}{2}\cos \frac{\alpha }{2} = 2C\sin \left( {\omega t + \frac{\alpha }{2}} \right).\cos \frac{\alpha }{2}\end{array}\)
Khi \(C = 10\) và \(\alpha = \frac{\pi }{3}\), ta có
\(f(t) = 2.10.\sin \left( {\omega t + \frac{{\frac{{2\pi }}{3}}}{2}} \right).\cos \frac{{\frac{{2\pi }}{3}}}{2} = 20\sin \left( {\omega t + \frac{\pi }{3}} \right)\cos \frac{\pi }{3} = 10\sin \left( {\omega t + \frac{\pi }{3}} \right)\)
Vậy biên độ và pha ban đầu của sóng âm kết hợp lần lượt là k =10 và \(\varphi = \frac{\pi }{3}\).
- Giải bài 1.58 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.59 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.60 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.61 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.62 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 43 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 39 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 41 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 42 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 43 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 42 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 41 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 39 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống