Giải bài 1.20 trang 16 sách bài tập toán 12 - Kết nối tri thức


Một chiếc xe nhỏ chuyển động không có ma sát, gắn vào tường bằng một lò xo (xem hình vẽ), được kéo ra khỏi vị trí đứng yên (10) cm rồi thả ra tại thời điểm ban đầu (t = 0) giây để chuyển động trong (4) giây. Vị trí (s) (cm) tại thời điểm (t) giây là (s = 10cos pi t).

Đề bài

Một chiếc xe nhỏ chuyển động không có ma sát, gắn vào tường bằng một lò xo (xem hình vẽ), được kéo ra khỏi vị trí đứng yên \(10\) cm rồi thả ra tại thời điểm ban đầu \(t = 0\) giây để chuyển động trong \(4\) giây. Vị trí \(s\) (cm) tại thời điểm \(t\) giây là \(s = 10\cos \pi t\).

a) Tốc độ lớn nhất của xe là bao nhiêu? Khi nào xe chuyển động với tốc độ như vậy, khi đó xe đang ở vị trí nào và gia tốc lúc đó có độ lớn là bao nhiêu?

b) Xe ở đâu khi độ lớn gia tốc là lớn nhất? Khi đó vận tốc của xe là bao nhiêu?

Phương pháp giải - Xem chi tiết

Ý a: Xác định công thức vận tốc, gia tốc theo t. Tìm giá trị lớn nhất của tốc độ (lấy trị tuyệt đối vận tốc) trên đoạn bằng phương pháp đã học đồng thời tìm t. Thay các giá trị t vừa tìm được vào s để tìm được vị trí, thay vào a để tìm gia tốc. Giải thích trên thực tế xe đang ở vị trí nào khi đó.

Ý b: Tìm t để trị tuyệt đối gia tốc a lớn nhất, sau đó thay số để tìm s và v, từ đó giải thích trên thực tế vận tốc và vị trí của vật đang như thế nào.

Lời giải chi tiết

a) Vận tốc của xe là \(v\left( t \right) = s'\left( t \right) =  - 10\pi \sin \pi t\) (cm/s)

Khi đó gia tốc của xe là \(a\left( t \right) = v'\left( t \right) =  - 10{\pi ^2}\cos \pi t\) (cm/s2)

Ta có \(v'\left( t \right) = 0 \Leftrightarrow  - 10{\pi ^2}\cos \pi t = 0 \Leftrightarrow \cos \pi t = 0 \Leftrightarrow \pi t = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z} \Leftrightarrow t = \frac{1}{2} + 2k,k \in \mathbb{Z}\)

Mà \(t \in \left[ {0;4} \right]\)nên ta tính được \(t \in \left\{ {\frac{1}{2};\frac{3}{2};\frac{5}{2};\frac{7}{2}} \right\}\).

Mặt khác, \(v\left( 0 \right) = v\left( 4 \right) = 0;v\left( {\frac{1}{2}} \right) = v\left( {\frac{3}{2}} \right) = v\left( {\frac{5}{2}} \right) = v\left( {\frac{7}{2}} \right) =  - 10\pi \)

Tốc độ của xe là \(\left| {v\left( t \right)} \right|\), vậy tốc độ lớn nhất của xe là \(10\pi \) cm/s đạt được tại các thời điểm \(\frac{1}{2};\frac{3}{2};\frac{5}{2};\frac{7}{2}\) giây. Tại các thời điểm đó, xe đều có gia tốc bằng 0 và tại vị trí \(s = 0\) tức là ở vị trí xe đứng yên khi mà chưa kéo lò xo.

b) Ta có \(a'\left( t \right) = 10{\pi ^3}\sin \pi t\); \(a'\left( t \right) = 0 \Leftrightarrow 10{\pi ^3}\sin \pi t = 0 \Leftrightarrow t \in \left\{ {0;1;2;3;4} \right\}\)

Khi đó \(a\left( 0 \right) = a\left( 2 \right) = a\left( 4 \right) =  - 10{\pi ^2};a\left( 1 \right) = a\left( 3 \right) = 10{\pi ^2}\).

Ta có \(\left| {a\left( t \right)} \right|\) là độ lớn của gia tốc do đó nó lớn nhất tại các thời điểm \(0;1;2;3;4\) giây.

Khi \(t = 0;2;4\) giây, xe ở vị trí \(s = 10\) cm; \(t = 1;3\) giây, xe ở vị trí \(s =  - 10\) cm.

Vậy độ lớn gia tốc lớn nhất tại các vị trí \(s = 10\) cm hoặc \(s =  - 10\) cm. (Tức là khi xe ở mép phải hoặc mép trái của quãng đường giao động) và tại các vị trí đó, vận tốc của xe đều bằng 0


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 1.19 trang 16 sách bài tập toán 12 - Kết nối tri thức

    Một vật được phóng lên trời theo một góc xiên (theta left( {{{45}^ circ } < theta < {{90}^ circ }} right)) so với phương ngang với vận tốc ban đầu là ({v_0}) (feet/giây) tính từ chân mặt phẳng nghiêng tạo một góc ({45^ circ }) so với phương ngang (xem hình vẽ). Nếu bỏ qua sức cản của không khí thì quãng đường R (tính bằng feet, 1 feet=0,3048 m) mà vật di chuyển lên mặt phẳng nghiêng được cho bởi hàm số (Rleft( theta right) = frac{{v_0^2sqrt 2 }}{{16}}cos theta left( {si

  • Giải bài 1.18 trang 15 sách bài tập toán 12 - Kết nối tri thức

    Hai nguồn nhiệt đặt cách nhau \(s\) mét, một nguồn có cường độ \(a\) đặt ở điểm A và một nguồn có cường độ \(b\) đặt ở điểm B. Cường độ nhiệt tại điểm P nằm trên đoạn thẳng nối A và B được tính theo công thức \(I = \frac{a}{{{x^2}}} + \frac{b}{{{{\left( {s - x} \right)}^2}}},\) Trong đó \(x\) (m) là khoảng cách giữa P và A. Tại điểm nào giữa A và B, nhiệt độ sẽ thấp nhất?

  • Giải bài 1.17 trang 15 sách bài tập toán 12 - Kết nối tri thức

    Giả sử một chiếc xe tải khi di chuyển với tốc độ (x) dặm/giờ sẽ tiêu thụ nhiên liệu ở mức (frac{1}{{200}}left( {frac{{2500}}{x} + x} right)) gallon/dặm. Nếu giá nhiên liệu là (3,6) USD/gallon thì chi phí nhiên liệu (C) (tính bằng USD) khi lái xe (200) dặm với tốc độ (x) dặm/giờ được cho bởi công thức (C = Cleft( x right) = 3,6 cdot left( {frac{{2500}}{x} + x} right)). Ở đây, dặm và gallon, là những đơn vị đo lường phổ biến của Mỹ. Biết rằng tốc độ (dặm/giờ) của xe tải t

  • Giải bài 1.16 trang 15 sách bài tập toán 12 - Kết nối tri thức

    Lợi nhuận thu được (P) của một công ty khi dùng số tiền (s) chi cho quảng cáo được cho bởi công thức (P = Pleft( s right) = - frac{1}{{10}}{s^3} + 6{s^2} + 400,{rm{ s}} ge 0). Ở đây các số tiền được được tính bằng đơn vị nghìn USD. a) Tìm số tiền công ty phải chi cho quảng cáo để mang lại lợi nhuận tối đa. b) Lợi nhuận thu được của công ty thay đổi thế nào khi số tiền chi cho quảng cáo thay đổi?

  • Giải bài 1.15 trang 15 sách bài tập toán 12 - Kết nối tri thức

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau: (fleft( x right) = left{ begin{array}{l}2x - 1,{rm{ }}0 le x le 2{x^2} - 5x + 9,{rm{ }}2 < x le 3.end{array} right.)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí