Giải bài 1.21 trang 19 sách bài tập toán 12 - Kết nối tri thức


Cho hàm số (y = fleft( x right) = frac{{{x^2} + 3x - 10}}{{x - 2}}). Đồ thị hàm số (fleft( x right)) có tiệm cận đứng không?

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x - 10}}{{x - 2}}\). Đồ thị hàm số \(f\left( x \right)\) có tiệm cận đứng không?

Phương pháp giải - Xem chi tiết

Tính giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\). Nhận xét thấy hàm số liên tục tại các điểm khác 2 và \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) \ne \infty \) nên theo định nghĩa tiệm cận đứng suy ra đồ thị hàm số không tồn tại tiệm cận đứng.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 3x - 10}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 5} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 5} \right) = 2 + 5 = 7\).

Lại có \(f\left( x \right)\) liên tục với mọi \(x \ne 2\). Do đó không tồn tại \({x_0}\) để hàm số có giới hạn tại đó là \(\infty \).

Vậy đồ thị hàm số \(f\left( x \right)\) không có tiệm cận đứng.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí