Bài tập cuối chương 4 - SBT Toán 12 Kết nối tri thức

Bình chọn:
4.9 trên 7 phiếu
Bài 4.31 trang 19 SBT toán 12 - Kết nối tri thức

(int {{x^2}dx} ) bằng A. (2x + C). B. (frac{1}{3}{x^3} + C). C. ({x^3} + C). D. (3{x^3} + C).

Xem lời giải

Bài 4.32 trang 19 SBT toán 12 - Kết nối tri thức

(int {left( {{x^2} + 3{x^3}} right)dx} ) có dạng bằng (frac{a}{3}{x^3} + frac{b}{4}{x^4} + C), trong đó (a,b) là hai số nguyên. Giá trị (a + b) bằng A. 4. B. 2. C. 5. D. 6.

Xem lời giải

Bài 4.33 trang 19 SBT toán 12 - Kết nối tri thức

Cho (intlimits_0^2 {fleft( x right)dx} = 3) và (intlimits_2^5 {fleft( x right)dx} = 7). Giá trị của (intlimits_0^5 {fleft( x right)dx} ) là A. 10. B. 4. C. -4. D. 3.

Xem lời giải

Bài 4.34 trang 19 SBT toán 12 - Kết nối tri thức

Cho hàm số (fleft( x right)) liên tục trên (mathbb{R}) và (intlimits_0^4 {fleft( x right)dx} = 4). Giá trị của tích phân (intlimits_0^4 {2fleft( x right)dx} ) là A. 2. B. 4. C. 8. D. 16.

Xem lời giải

Bài 4.35 trang 19 SBT toán 12 - Kết nối tri thức

Cho hàm số (fleft( x right)) có đạo hàm (f'left( x right)) liên tục trên (mathbb{R}), (fleft( 0 right) = 1) và (intlimits_0^2 {f'left( x right)dx} = 4). Khi đó giá trị của (fleft( 2 right)) bằng A. 5. B. -3. C. 6. D. 8.

Xem lời giải

Bài 4.36 trang 19 SBT toán 12 - Kết nối tri thức

Giá trị trung bình của hàm (fleft( x right)) trên (left[ {a;b} right]) được tính theo công thức (m = frac{1}{{b - a}}intlimits_a^b {fleft( x right)dx} ). Khi đó giá trị trung bình của hàm (fleft( x right) = {x^2} + 2x) trên đoạn (left[ {0;3} right]) là A. (frac{8}{3}). B. 18. C. 6. D. 5.

Xem lời giải

Bài 4.37 trang 20 SBT toán 12 - Kết nối tri thức

Cho hàm số (y = fleft( x right)) liên tục trên (left[ {a;b} right]) và (fleft( x right) le 0,forall x in left[ {a;b} right]). Diện tích hình phẳng giới hạn bởi đồ thị hàm số (y = fleft( x right)), trục (Ox) và hai đường thẳng (x = a,x = b) được tính bằng công thức A. (S = intlimits_a^b {fleft( x right)dx} ). B. (S = - intlimits_a^b {fleft( x right)dx} ). C. (S = pi intlimits_a^b {fleft( x right)dx} ). D. (S = pi intlimits_a^b {{{

Xem lời giải

Bài 4.38 trang 20 SBT toán 12 - Kết nối tri thức

Một đất nước tiêu thụ dầu theo tốc độ xác định bởi (rleft( t right) = 20 cdot {e^{0,2t}}) tỉ thùng mỗi năm, trong đó t là thời gian tính theo năm, (0 le t le 10). Trong khoảng 10 năm kể trên, nước đó đã tiêu thụ lượng dầu là A. (rleft( {10} right)). B. (rleft( {10} right) - rleft( 0 right)). C. (intlimits_0^{10} {r'left( t right)dt} ). D. (intlimits_0^{10} {rleft( t right)dt} ).

Xem lời giải

Bài 4.39 trang 20 SBT toán 12 - Kết nối tri thức

Cho (S) là diện tích phần hình phẳng được tô màu như Hình 4.7. Khi đó diện tích (S) là A. (S = intlimits_a^b {left| {fleft( x right) - gleft( x right)} right|dx} ). B. (S = intlimits_a^m {left| {fleft( x right) - gleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right) - fleft( x right)} right|dx} ). C. (S = intlimits_a^m {left| {fleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right)} right|dx} ). D. (S = i

Xem lời giải

Bài 4.40 trang 20 SBT toán 12 - Kết nối tri thức

Khi nghiên cứu một quần thể vi khuẩn, người ta nhận thấy quần thể vi khuẩn đó ở ngày thứ t có số lượng (Nleft( t right)) con. Biết rằng tốc độ phát triển của quần thể đó là (N'left( t right) = frac{{8000}}{t}) và sau ngày thứ nhất (left( {t = 1} right)) có 250 000 con. Sau 6 ngày (left( {t = 6} right)), số lượng của quần thể vi khuẩn là A. 353 584 con. B. 234 167 con. C. 288 959 con. D. 264 334 con.

Xem lời giải

Bài 4.41 trang 21 SBT toán 12 - Kết nối tri thức

Tìm họ tất cả các nguyên hàm của các hàm số sau: a) (y = {sin ^2}frac{x}{2}); b) (y = {e^{2x}} - 2{x^5} + 5).

Xem lời giải

Bài 4.42 trang 21 SBT toán 12 - Kết nối tri thức

Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = 2x - \frac{1}{x}\) thỏa mãn điều kiện \(F\left( 1 \right) = 3\).

Xem lời giải

Bài 4.43 trang 21 SBT toán 12 - Kết nối tri thức

a) (intlimits_0^3 {left| {3 - x} right|dx} ); b) (intlimits_0^2 {left( {{e^x} - 4{x^3}} right)dx} ); c) (intlimits_0^{frac{pi }{2}} {left( {sin x + cos x} right)dx} ).

Xem lời giải

Bài 4.44 trang 21 SBT toán 12 - Kết nối tri thức

Tính diện tích \(S\) của hình phẳng được giới hạn bởi đồ thị hàm số \(y = 3{x^2} + 1\), trục hoành và hai đường thẳng \(x = 0,x = 2\).

Xem lời giải

Bài 4.45 trang 21 SBT toán 12 - Kết nối tri thức

Cho hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y = \sqrt {{x^2} + 1} \), trục hoành và hai đường thẳng \(x = 0,x = 1\). Tính thể tích khối tròn xoay khi quay \(D\) quanh trục hoành.

Xem lời giải

Bài 4.46 trang 21 SBT toán 12 - Kết nối tri thức

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để \(\int\limits_0^3 {\left( {10x - 2m} \right)dx} > 0\)

Xem lời giải

Bài 4.47 trang 21 SBT toán 12 - Kết nối tri thức

Khi nghiên cứu dịch sốt xuất huyết ở một địa phương, các chuyên gia y tế ước tính rằng tại ngày thứ \(m\) có \(F\left( m \right)\) người mắc bệnh (sau khi đã làm tròn đến chữ số hàng đơn vị). Biết rằng tốc độ lan truyền bệnh là \(F'\left( m \right) = \frac{{150}}{{2m + 1}}\) và ngày đầu tiên \(\left( {m = 0} \right)\) người ta phát hiện ra 50 bệnh nhân. Hãy xác định biểu thức của \(F\left( m \right)\) và số người mắc bệnh ở ngày thứ 10.

Xem lời giải

Bài 4.48 trang 21 SBT toán 12 - Kết nối tri thức

Một ô tô đồ chơi trượt xuống dốc và dừng lại sau 5 giây, vận tốc của ô tô đồ chơi từ thời điểm \(t = 0\) giây đến \(t = 5\) giây được cho bởi công thức: \(v\left( t \right) = \frac{1}{2}{t^2} - 0,1{t^3}\)(m/s). Tính quãng đường ô tô đồ chơi đi đến khi dừng lại(làm tròn kết quả theo đơn vị mét đến chữ số thập phân thứ hai).

Xem lời giải