Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
                        
                                                        Bài 2. Căn bậc hai của số phức và phương trình bậc hai
                                                    Bài 21 trang 197 SGK Đại số và Giải tích 12 Nâng cao>
Tìm số phức B để phương trình bậc hai
LG a
Giải phương trình: \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0\)
Phương pháp giải:
Sử dụng phương pháp giải phương trình tích
\(AB = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)
Lời giải chi tiết:
Nhận xét:
\({\left( {1 - i} \right)^2} = 1 - 2i - 1 = - 2i \) \(\Rightarrow \frac{{{{\left( {1 - i} \right)}^2}}}{2} = - i \) \(\Rightarrow {\left( {\frac{{1 - i}}{{\sqrt 2 }}} \right)^2} = - i\)
Suy ra \(–i\) có căn bậc hai \( \pm {\frac{{1 - i}}{{\sqrt 2 }}}\)
Ta có \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0 \) \(\Leftrightarrow \left[ \matrix{ {z^2} + i = 0 \hfill \cr {z^2} - 2iz - 1 = 0 \hfill \cr} \right.\)
* \({z^2} + i = 0 \Leftrightarrow {z^2} = - i \) \(\Leftrightarrow z = \pm {\frac{{1 - i}}{{\sqrt 2 }}}\)
* \({z^2} - 2iz - 1 = 0\) \( \Leftrightarrow {z^2} - 2iz + {i^2} = 0\) \( \Leftrightarrow {\left( {z - i} \right)^2} = 0 \) \( \Leftrightarrow z = i\)
Vậy \(S = \left\{ {i;\pm {\frac{{1 - i}}{{\sqrt 2 }}} } \right\}\)
LG b
Tìm số phức B để phương trình bậc hai \({z^2} + Bz + 3i = 0\) có tổng bình phương hai nghiệm bằng 8.
Phương pháp giải:
Sử dụng định lí Viet
\(\left\{ \begin{array}{l}
{z_1} + {z_2} = - \frac{B}{A}\\
{z_1}{z_2} = \frac{C}{A}
\end{array} \right.\)
Lời giải chi tiết:
Gọi \({z_1},{z_2}\) là hai nghiệm của phương trình
Theo giả thiết tổng bình phương hai nghiệm bằng 8 nên ta có: \({z_1}^2 + {z_2}^2 = 8\)
Theo định lí Vi-et ta có:
\(\left\{ \matrix{
{z_1} + {z_2} = - B \hfill \cr 
{z_1}.{z_2} = 3i \hfill \cr} \right.\)
\(\eqalign{
& {z_1}^2 + {z_2}^2 = 8 \cr &\Leftrightarrow {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}.{z_2} = 8 \cr 
& \Leftrightarrow {\left( { - B} \right)^2} - 2.3i = 8 \cr 
& \Leftrightarrow {B^2} = 8 + 6i \cr 
& \Leftrightarrow {B^2} = 9 + 2.3.i + {i^2} \cr 
& \Leftrightarrow {B^2} = {\left( {3 + i} \right)^2} \cr 
& \Leftrightarrow B = \pm \left( {3 + i} \right) \cr} \)
Loigiaihay.com
                
                                    
                                    
        



