Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 2. Căn bậc hai của số phức và phương trình bậc hai
Bài 18 trang 196 SGK Đại số và Giải tích 12 Nâng cao>
Chứng minh rằng nếu z là một căn bậc hai của số phức w thì
Đề bài
Chứng minh rằng nếu \(z\) là một căn bậc hai của số phức \({\rm{w}}\) thì \(\left| z \right| = \sqrt {\left| {\rm{w}} \right|} \).
Lời giải chi tiết
Giả sử \(z=x+yi\) và \(\rm{w}=a+bi\)
\(z\) là một căn bậc hai của số phức w thì \({z^2} = {\rm{w}}\)
\(\eqalign{
& \Leftrightarrow {\left( {x + yi} \right)^2} = a + bi \Leftrightarrow {x^2} - {y^2} + 2xyi = a + bi \cr
& \Leftrightarrow \left\{ \matrix{
{x^2} - {y^2} = a \hfill \cr
2xy = b \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{\left( {{x^2} - {y^2}} \right)^2} = {a^2} \hfill \cr
4{x^2}{y^2} = {b^2} \hfill \cr} \right. \cr
& \Rightarrow {a^2} + {b^2} = {x^4} + {y^4} + 2{x^2}{y^2} = {\left( {{x^2} + {y^2}} \right)^2} \cr
& \Leftrightarrow \sqrt {{a^2} + {b^2}} = {x^2} + {y^2} \cr} \)
\( \Rightarrow {\left| z \right|^2} = \left| {\rm{w}} \right| \Rightarrow \left| z \right| = \sqrt {{{\left| z \right|}^2}} = \sqrt {\left| {\rm{w}} \right|} \)
Loigiaihay.com




