CHƯƠNG 1. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH
Bài 1. Phương trình quy về phương trình bậc nhất một ẩn
Bài 2. Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn
Bài tập cuối chương 1
HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM
Vẽ đường tròn bằng phần mềm GeoGebra
Vẽ đồ thị hàm số bậc hai y = ax^2 (a khác 0)

Trắc nghiệm Giải hệ phương trình chứa tham số Toán 9 có đáp án

Trắc nghiệm Giải hệ phương trình chứa tham số

9 câu hỏi
Trắc nghiệm
Câu 1 :

Cho hai đường thẳng:

${d_1}:mx - 2\left( {3n + 2} \right)y = 6$ và ${d_2}:\left( {3m - 1} \right)x + 2ny = 56.$

Tìm tích $m. n$ để  hai đường thẳng cắt nhau tại điểm $I\left( { - 2;3} \right)$.

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $ - 2$

Câu 2 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx - y = 2m\\4x - my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm hệ thức liên hệ giữa $x, y$ không phụ thuộc vào $m$

  • A.

    $2x + y + 3 = 0$

  • B.

    $2x - y = 3$

  • C.

    $ - 2x + y = 3$

  • D.

    $2x + y = 3$

Câu 3 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx - y = 2m\\4x - my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm giá trị của m để : \(6x - 2y = 13.\)

  • A.

    $m =  - 9$

  • B.

    $m = 9$

  • C.

    $m = 8$

  • D.

    $m =  - 8$

Câu 4 :

Cho hệ phương trình \(\left\{ \begin{array}{l}x + my = 1\\mx - y =  - m\end{array} \right.\). Hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m là:

  • A.

    \(2x + y = 3\)

  • B.

    \(\dfrac{x}{y} = 3\)

  • C.

    \(xy = 3\)         

  • D.

    \({x^2} + {y^2} = 1\) 

Câu 5 :

Cho hệ phương trình \(\left\{ \begin{array}{l}x + (m + 1)y = 1\\4x - y =  - 2\end{array} \right.\) . Tìm m để hệ phương trình có nghiệm \((x;y)\) thỏa mãn \(2x + 2y = 5\)

  • A.

    \(m =  - \dfrac{5}{8}\)

  • B.

    \(m = \dfrac{5}{8}\)

  • C.

    \(m = \dfrac{8}{5}\)

  • D.

    \(m =  - \dfrac{8}{5}\)

Câu 6 :

Cho hệ phương trình: \(\left\{ \begin{array}{l}mx + 4y = 20\\x + my = 10\end{array} \right.\), với m là tham số.  Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất?

  • A.
    \(m =  \pm 2\)
  • B.
    \(m \ne  \pm 2\)
  • C.
    m = 2
  • D.
    m = - 2
Câu 7 :

Tìm m để hệ phương trình sau có vô số nghiệm: \(\left\{ \begin{array}{l}2x + my = m + 2\\\left( {m + 1} \right)x + 2my = 2m + 4\end{array} \right.\)

  • A.
    \(m \in \left\{ {3;0; - 2} \right\}\)
  • B.
    \(m=3\)
  • C.
    \(m=0\)
  • D.
    \(m=-2\)
Câu 8 :

Tìm các giá trị của a để hệ phương trình : \(\left\{ \begin{array}{l}\left( {a + 1} \right)x + 8y = 4a\\ax + \left( {a + 3} \right)y = 3a - 1\end{array} \right.\) có vô số nghiệm.

  • A.
    \(a=1\)
  • B.
    \(a=2\)
  • C.
    \(a=3\)
  • D.
    Cả 3 đáp án trên đều đúng
Câu 9 :

Cho hệ phương trình \(\left\{ \matrix{ x + my = 1 \hfill \cr mx - y =  - m \hfill \cr}  \right.\)

Hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m là:

  • A.
    \(2x + y = 3\)
  • B.

    \(\displaystyle {x \over y} = 3\)

  • C.
    \(xy = 3\)
  • D.
    \({x^2} + {y^2} = 1\)