CHƯƠNG 1. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH
Bài 1. Phương trình quy về phương trình bậc nhất một ẩn
Bài 2. Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn
Bài tập cuối chương 1
HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM
Vẽ đường tròn bằng phần mềm GeoGebra
Vẽ đồ thị hàm số bậc hai y = ax^2 (a khác 0)

Trắc nghiệm Căn bậc hai của một tích Toán 9 có đáp án

Trắc nghiệm Căn bậc hai của một tích

28 câu hỏi
Trắc nghiệm
Câu 1 :

Cho $a,b$ là hai số không âm. Khẳng định nào sau đây là đúng?

  • A.

    $\sqrt {ab}  = a\sqrt b $

  • B.

    $\sqrt a \sqrt b  = b\sqrt a $

  • C.

    $\sqrt a .\sqrt b  = \sqrt {ab} $

  • D.

    $\sqrt {ab}  = \dfrac{{\sqrt a }}{{\sqrt b }}$

Câu 2 :

Rút gọn biểu thức  $\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} $ với $a \ge \dfrac{1}{2}$ ta được

  • A.

    $a\left( {2a - 1} \right)$

  • B.

    $\left( {1 - 2a} \right){a^2}$

  • C.

    $\left( {2a - 1} \right){a^2}$

  • D.

    $\left( {1 - 2a} \right)a$

Câu 3 :

Rút gọn biểu thức  $\sqrt {{a^2}.{{\left( {2a - 3} \right)}^2}} $ với $ 0 \le a < \dfrac{3}{2}$ ta được

  • A.

    $a\left( {2a - 3} \right)$

  • B.

    $\left( {3- 2a} \right){a^2}$

  • C.

    $\left( {2a - 3} \right){a^2}$

  • D.

    $\left( {3 - 2a} \right)a$

Câu 4 :

Rút gọn biểu thức  $\sqrt {0,9.0,1.{{\left( {3 - x} \right)}^2}} $ với $x > 3$ ta được

  • A.

    $0,3\left( {x - 3} \right)$

  • B.

    $0,3\left( {3 - x} \right)$

  • C.

    $0,9\left( {x - 3} \right)$

  • D.

    $0,1\left( {x - 3} \right)$

Câu 5 :

Giá trị biểu thức  $\sqrt {x - 2} .\sqrt {x + 2} $ khi $x = \sqrt {29} $ là

  • A.

    $29$

  • B.

    $5$

  • C.

    $10$

  • D.

    $25$

Câu 6 :

Rút gọn biểu thức  $\dfrac{{\sqrt {{x^3} + 2{x^2}} }}{{\sqrt {x + 2} }}$ với $x > 0$ ta được

  • A.

    $x$

  • B.

    $-x$

  • C.

    $\sqrt x $

  • D.

    $\sqrt {x + 2} $

Câu 7 :

Với $x > 5$, cho biểu thức  $A = \dfrac{{\sqrt {{x^2} - 5x} }}{{\sqrt {x - 5} }}$ và $B = x$.

Có bao nhiêu giá trị của $x$ để $A = B$.

  • A.

    $1$

  • B.

    $2$

  • C.

    $0$

  • D.

    Vô số.

Câu 8 :

Với $x,y \ge 0;x \ne y$, rút gọn biểu thức  $A = \dfrac{{x - \sqrt {xy} }}{{x - y}}$  ta được

  • A.

    $\dfrac{{\sqrt x }}{{\sqrt x  - \sqrt y }}$

  • B.

    \(\dfrac{1}{{\sqrt x - \sqrt y }}\)

  • C.

    $\dfrac{{\sqrt y }}{{\sqrt x  - \sqrt y }}$

  • D.

    $\dfrac{{\sqrt x }}{{\sqrt x  + \sqrt y }}$

Câu 9 :

Giá trị của biểu thức  \((\sqrt {12}  + 2\sqrt {27} )\dfrac{{\sqrt 3 }}{2} - \sqrt {150} \)  là:

  • A.

    $12 - 5\sqrt 6 $

  • B.

    $12 + 5\sqrt 6 $

  • C.

    $12 + \sqrt 6 $

  • D.

    $12 - \sqrt 6 $

Câu 10 :

Với \(a \ge 0,b \ge 0,a \ne b\), rút gọn biểu thức  \(\dfrac{{a - b}}{{\sqrt a  - \sqrt b }} - \dfrac{{\sqrt {{a^3}}  + \sqrt {{b^3}} }}{{a - b}}\)  ta được:

  • A.

    $\dfrac{{\sqrt {ab} }}{{\sqrt a  - \sqrt b }}$

  • B.

    $\dfrac{{\sqrt {ab}  - 2b}}{{\sqrt a  - \sqrt b }}$

  • C.

    $\dfrac{{2b}}{{\sqrt a  - \sqrt b }}$

  • D.

    $\dfrac{{\sqrt {ab}  - 2a}}{{\sqrt a  - \sqrt b }}$

Câu 11 :

Nghiệm của phương trình  \(\sqrt {4x - 20}  + \sqrt {x - 5}  - \dfrac{1}{3}\sqrt {9x - 45}  = 4\) là

  • A.

    $x =  - 9$

  • B.

    $x =  5$

  • C.

    $x =  8$

  • D.

    $x =  9$

Câu 12 :

Khẳng định nào sau đây là đúng?

  • A.

    \(\sqrt {2018 + 2019}  = \sqrt {2018}  + \sqrt {2019} \)

  • B.

    \(\sqrt {2018. 2019}  = \dfrac{{\sqrt {2018} }}{{\sqrt {2019} }}\)

  • C.

    \(\sqrt {2018} .\sqrt {2019}  = \sqrt {2018.2019} \)

  • D.

    \(2018. 2019 = \dfrac{{\sqrt {2019} }}{{\sqrt {2018} }}\)

Câu 13 :

Rút gọn biểu thức  \(\sqrt {9{{\left( { - a} \right)}^2}.{{\left( {3 - 4a} \right)}^6}} \) với \(a \ge \dfrac{3}{4}\) ta được:

  • A.

    \(3a{\left( {4a - 3} \right)^3}\)

  • B.

    \( - 3a{\left( {4a - 3} \right)^3}\)

  • C.

    \(3a\left( {4a - 3} \right)\)

  • D.

    \(3a{\left( {3 - 4a} \right)^3}\)

Câu 14 :

Giá trị biểu thức \(\sqrt {5x + 3} .\sqrt {5x - 3} \) khi \(x = \sqrt {3,6} \) là:

  • A.

    \(3,6\)

  • B.

    \(3\)

  • C.

    \(81\)

  • D.

    \(9\)

Câu 15 :

Rút gọn biểu thức  \(\dfrac{{\sqrt {9{x^5} + 33{x^4}} }}{{\sqrt {3x + 11} }}\) với \(x > 0\) ta được:

  • A.

    \({x^2}\)

  • B.

    \({x^4}\)

  • C.

    \(\sqrt 3 {x^2}\)

  • D.

    \(\sqrt {3x + 11} \)

Câu 16 :

Với \(x > 0\) cho biểu thức  \(A = \dfrac{{\sqrt {{x^2} + 6x} }}{{\sqrt {x + 6} }}\)  và \(B = 2x\). Có bao nhiêu giá trị của \(x\) để \(A = B\).

  • A.

    \(1\)

  • B.

    \(2\)

  • C.

    \(0\)

  • D.

    Vô số

Câu 17 :

Với \(x,y \ge 0;3x \ne y\), rút gọn biểu thức  \(B = \dfrac{{3x - \sqrt {3xy} }}{{3x - y}}\) ta được:

  • A.

    \(\dfrac{{\sqrt {3x} }}{{\sqrt {3x}  - \sqrt y }}\)

  • B.

    \(\dfrac{1}{{3\sqrt x  - \sqrt y }}\)

  • C.

    \(\dfrac{{\sqrt {3x} }}{{\sqrt {3x}  + \sqrt y }}\)

  • D.

    \(\dfrac{{3\sqrt x }}{{3\sqrt x  + \sqrt y }}\)

Câu 18 :

Giá trị của biểu thức  \(\sqrt {252}  - \sqrt {700}  + \sqrt {1008}  - \sqrt {448} \) là:

  • A.

    \(\sqrt 7 \)

  • B.

    \(0\)

  • C.

    \(4\sqrt 7 \)

  • D.

    \(5\sqrt 7 \)

Câu 19 :

Với \(a \ge 0,b \ge 0,2a \ne 3b\), rút gọn biểu thức \(\dfrac{{2a + 3b}}{{\sqrt {2a}  + \sqrt {3b} }} + \dfrac{{\sqrt {8{a^3}}  - \sqrt {27{b^3}} }}{{3b - 2a}}\) ta được:

  • A.

    \(\dfrac{{ - \sqrt {6ab} }}{{\sqrt {2a}  + \sqrt {3b} }}\)

  • B.

    \(\dfrac{{\sqrt {6ab} }}{{\sqrt {2a}  + \sqrt {3b} }}\)

  • C.

    \(\dfrac{{ - \sqrt {6ab} }}{{\sqrt {2a}  - \sqrt {3b} }}\)

  • D.

    \(\dfrac{{\sqrt {6ab} }}{{\sqrt {2a}  - \sqrt {3b} }}\)

Câu 20 :

Nghiệm của phương trình \(\dfrac{3}{2}\sqrt {x - 1}  - \dfrac{1}{2}\sqrt {9{\rm{x}} - 9}  + 16\sqrt {\dfrac{{x - 1}}{{64}}}  = 12\) là:

  • A.

    \(x = 37\)

  • B.

    \(x = 7\)

  • C.

    \(x = 35\)

  • D.

    \(x = 5\)

Câu 21 :

Rút gọn biểu thức \(\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} \) với \(0 \le a < \dfrac{1}{2}\) ta được:

  • A.

    \(a\left( {2a - 1} \right)\)

  • B.

    \(\left( {1 - 2a} \right){a}\)      

  • C.

    \(\left( {2a - 1} \right){a^2}\)

  • D.

    \(\left( {1 - 2a} \right)a^2\)

Câu 22 :

Rút gọn \(\sqrt {27.48.{{(1 - a)}^2}} \) với \(a > 1\)

  • A.

    \(36.(1 - a)\)

  • B.

    \(36.(a - 1)\)

  • C.

    \(48.(a - 1)\)

  • D.

    \(48.(1 - a)\)

Câu 23 :

Giá trị của biểu thức \(A = \sqrt {810.40}  + \sqrt {24} .\sqrt {12} .\sqrt {0,5} \) là:

  • A.
    \(A = 192\)     
  • B.
    \(A = 180\)
  • C.
    \(A = 12\)
  • D.
    \(A = 164\)
Câu 24 :

Tính \(B = \left( {\sqrt {18}  + \sqrt {32}  - \sqrt {50} } \right).\sqrt 2 \)

  • A.
    \(B = 1\)
  • B.
    \(B = 4\)
  • C.
    \(B = 5\)
  • D.
    \(B = 0\)
Câu 25 :

Rút gọn \(A = \dfrac{{\sqrt {25 + x - 10\sqrt x } }}{{\sqrt {25 + x + 10\sqrt x } }}\)với \(x \ge 25\)

  • A.
    \(A = \sqrt x  + 2\)     
  • B.
    \(A = 1\)
  • C.

    \(A = \dfrac{{\sqrt x  - 5}}{{\sqrt x  + 5}}\)

  • D.

    \(A =  - \dfrac{{\sqrt x  - 5}}{{\sqrt x  + 5}}\)

Câu 26 :

Cho \(P = \dfrac{{\sqrt {x - 5\sqrt x  + 6} }}{{\sqrt x  - 2}}\) với \(x \ge 9\). Tính \({P^2}.\)

  • A.

    \(\sqrt {\dfrac{{\sqrt x  - 3}}{{\sqrt x  - 2}}} \)

  • B.

    \(\dfrac{{\sqrt x  - 3}}{{\sqrt x  - 2}}\)  

  • C.
    \(\sqrt x  - 2\)
  • D.
    \(\sqrt x  + 3\)
Câu 27 :

Rút gọn \(P = \dfrac{1}{{\sqrt x  - 2}} + \dfrac{1}{{\sqrt x  + 2}} - \dfrac{4}{{x - 4}}\) với \(x \ge 0,\,\,\,x \ne 4\).

  • A.

    \(P = \dfrac{2}{{\sqrt x  + 2}}\)

  • B.

    \(P = \dfrac{2}{{\sqrt x  - 2}}\)  

  • C.

    \(P = \dfrac{{\sqrt x }}{{x - 4}}\)

  • D.
    Kết quả khác
Câu 28 :

Tính giá trị của biểu thức \(A = \dfrac{{2\sqrt x }}{{\sqrt 5  + \sqrt 3 }}\) với \(x = 4 + \sqrt {15} \)

  • A.

    \(\dfrac{1}{{2\sqrt 3 }}\)

  • B.

    \(\dfrac{1}{{2\left( {\sqrt 3  + \sqrt 5 } \right)}}\)

  • C.

    \(\dfrac{1}{{\sqrt 2 }}\)

  • D.
    \(\sqrt 2 \)