Lý thuyết Tỉ số lượng giác của góc nhọn Toán 9 Cánh diều


1. Tỉ số lượng giác của một góc nhọn \({\rm{sin\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,huyền}};{\rm{cos\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,huyền}};\) \({\rm{tan\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,kề}};{\rm{cot\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,đối}}.\) \(\cot \alpha = \frac{1}{{\tan \alpha }}\). \(\sin \alpha ,\cos \alpha ,\tan \alpha ,\cot \alpha \) gọi là các tỉ số lượng giác của góc nhọn \(\alpha \).

1. Tỉ số lượng giác của một góc nhọn

\({\rm{sin\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,huyền}};{\rm{cos\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,huyền}};\)

\({\rm{tan\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,kề}};{\rm{cot\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,đối}}.\)

\(\cot \alpha  = \frac{1}{{\tan \alpha }}\).

\(\sin \alpha ,\cos \alpha ,\tan \alpha ,\cot \alpha \) gọi là các tỉ số lượng giác của góc nhọn \(\alpha \).

Tip học thuộc nhanh:

Sin đi học

Cos không hư

Tan đoàn kết

Cotang kết đoàn

Ví dụ:

Theo định nghĩa của tỉ số lượng giác, ta có:

\(\sin \alpha  = \frac{{AC}}{{BC}} = \frac{4}{5}\), \(\cos \alpha  = \frac{{AB}}{{BC}} = \frac{3}{5}\), \(\tan \alpha  = \frac{{AC}}{{AB}} = \frac{4}{3}\), \(\cot \alpha  = \frac{{AB}}{{AC}} = \frac{3}{4}\)

2. Tỉ số lượng giác của hai góc phụ nhau

Nhận xét: Hai góc nhọn có tổng bằng \({90^0}\) được gọi là hai góc phụ nhau.

Định lí về tỉ số lượng giác của hai góc phụ nhau

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Với \({0^0} < \alpha  < {90^0}\), ta có:

\(\sin \left( {{{90}^0} - \alpha } \right) = \cos \alpha \); \(\cos \left( {{{90}^0} - \alpha } \right) = \sin \alpha \);

\(\tan \left( {{{90}^0} - \alpha } \right) = \cot \alpha \); \(\cot \left( {{{90}^0} - \alpha } \right) = \tan \alpha \).

Cho \(\alpha \) và \(\beta \) là hai góc phụ nhau, ta có:

\(\sin \alpha  = \cos \beta \), \(\cos \alpha  = \sin \beta \), \(\tan \alpha  = \cot \beta \), \(\cot \alpha  = \tan \beta \).

Ví dụ:

\(\begin{array}{l}\sin {60^0} = \cos \left( {{{90}^0} - {{60}^0}} \right) = \cos {30^0};\\\cos {52^0}30' = \sin \left( {{{90}^0} - {{52}^0}30'} \right) = \sin {37^0}30';\\\tan {80^0} = \cot \left( {{{90}^0} - {{80}^0}} \right) = \cot {10^0};\\\cot {82^0} = \tan \left( {{{90}^0} - {{82}^0}} \right) = \tan {8^0}.\end{array}\)

Bảng giá trị lượng giác của các góc \({30^0},{45^0},{60^0}\)

Quy ước:

\(\begin{array}{l}{\sin ^2}\alpha  = {\left( {\sin \alpha } \right)^2};\\{\cos ^2}\alpha  = {\left( {\cos \alpha } \right)^2};\\{\tan ^2}\alpha  = {\left( {\tan \alpha } \right)^2};\\{\cot ^2}\alpha  = {\left( {\cot \alpha } \right)^2}.\end{array}\)

3. Sử dụng máy tính cầm tay tính tỉ số lượng giác của một góc nhọn

Người ta thường dùng các đơn vị số đo góc là độ (kí hiệu: \(^0\)), phút (kí hiệu: \('\)), giây (kí hiệu: \(''\)).

Ta có thể sử dụng nhiều loại máy tính cầm tay để tính các tỉ số lượng giác của góc nhọn và tính số đo của góc nhọn khi biết một tỉ số lượng giác của nó.

Lưu ý: ta cần đổi đơn vị đo về độ.

Tính các tỉ số lượng giác của các góc nhọn

Để tính tỉ số lượng giác của một góc \(\alpha \), ta dùng các nút:

Để tính \(\cot \alpha \), ta tính \(\cot \alpha  = \frac{1}{{\tan \alpha }}\) hoặc \(\tan \left( {{{90}^0} - \alpha } \right)\).

Bảng tóm tắt cách tính tỉ số lượng giác của một góc nhọn

Ví dụ:

Xác định số đo của góc nhọn khi biết một tỉ số lượng giác của góc đó

Bảng tóm tắt cách tính số đo của một góc nhọn khi biết một tỉ số lượng giác

Để tìm \(\alpha \) khi biết \(\cot \alpha \), ta tính \(\tan \alpha  = \frac{1}{{\cot \alpha }}\) và dùng \(\tan \alpha \) để tính \(\alpha \).

Ví dụ:

Một số công thức mở rộng:

+) \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)

+) \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}\)

+) \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}\)

+) \(\tan \alpha .\cot \alpha  = 1\)

+) \(\frac{1}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha  + 1\)

+) \(\frac{1}{{{{\sin }^2}\alpha }} = {\cot ^2}\alpha  + 1\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí