Giải mục 1 trang 9 SGK Toán 12 tập 2 - Cánh diều


Nguyên hàm của hàm số lũy thừa

Đề bài

Trả lời câu hỏi Hoạt động 1 trang 9 SGK Toán 12 Cánh diều

Hàm số \(F(x) = \frac{1}{2}{x^2}\) có phải là nguyên hàm của hàm số \(f(x) = x\) hay không?

Phương pháp giải - Xem chi tiết

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K

Lời giải chi tiết

\(F'(x) = x\) nên \(F(x) = \frac{1}{2}{x^2}\) là nguyên hàm của hàm số \(f(x) = x\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 2 trang 10 SGK Toán 12 tập 2 - Cánh diều

    a) Tính đạo hàm của hàm số \(y = \ln \left| x \right|\) trên khoảng \((0; + \infty )\) b) Tính đạo hàm của hàm số \(y = \ln \left| x \right|\) trên khoảng \(( - \infty ;0)\)

  • Giải mục 3 trang 11 SGK Toán 12 tập 2 - Cánh diều

    a) Hàm số (y = - cos x) có là nguyên hàm của hàm số (y = sin x) b) Hàm số (y = sin x) có là nguyên hàm của hàm số (y = cos x) c) Với (x notin kpi (k in mathbb{Z})), hàm số (y = cot x) có là nguyên hàm của hàm số (frac{1}{{{{sin }^2}(x)}}) hay không? d) Với (x notin frac{pi }{2} + kpi (k in mathbb{Z})), hàm số (y = tan x) có là nguyên hàm của hàm số (frac{1}{{{{cos }^2}(x)}}) hay không?

  • Giải mục 4 trang 12 SGK Toán 12 tập 2 - Cánh diều

    Tính đạo hàm của hàm số \(F(x) = \frac{{{a^x}}}{{\ln a}}(a > 0,a \ne 1)\). Từ đó, nêu một nguyên hàm của hàm số \(f(x) = {a^x}\)

  • Giải bài tập 1 trang 15 SGK Toán 12 tập 2 - Cánh diều

    \(\int {(2\sin x - 3\cos x)dx} \) bằng: A. \(2\cos x - 3\sin x + C\) B. \(2\cos x + 3\sin x + C\) C. \( - 2\cos x + 3\sin x + C\) D. \( - 2\cos x - 3\sin x + C\)

  • Giải bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều

    \(\int {{7^x}dx} \) bằng: A. \({7^x}.\ln 7 + C\) B. \(\frac{{{7^{x + 1}}}}{{x + 1}} + C\) C. \(\frac{{{7^x}}}{{\ln 7}} + C\) D. \({7^x} + C\)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí