Bài 3. Tích phân - Toán 12 Cánh diều

Bình chọn:
4.9 trên 79 phiếu
Lý thuyết Tích phân

Cho hàm số f(x) liên tục trên đoạn (left[ {a;b} right]). Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn (left[ {a;b} right]) thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là (intlimits_a^b {f(x)dx} ).

Xem chi tiết

Câu hỏi mở đầu trang 17

Họa sĩ thiết kế logo hình con cá cho một doanh nghiệp kinh doanh hải sản. Logo là hình phẳng giới hạn bởi hai parabol với các kích thước được cho trong Hình 3 (đơn vị trên mỗi trục tọa độ là decimét). Làm thế nào để tính diện tích logo?

Xem chi tiết

Câu hỏi mục 1 trang 17,18,19

Định nghĩa tích phân

Xem chi tiết

Quảng cáo

Lộ trình SUN 2026
Câu hỏi mục 2 trang 21,22,23

Tính chất của tích phân

Xem chi tiết

Bài 1 trang 26

Tính tích phân (intlimits_2^3 {frac{1}{{{x^2}}}} dx) có giá trị bằng: A. (frac{1}{6}) B. ( - frac{1}{6}) C. (frac{{19}}{{648}}) D. ( - frac{{19}}{{648}})

Xem chi tiết

Bài 2 trang 26

Tích phân (intlimits_{frac{pi }{7}}^{frac{pi }{5}} {sin xdx} ) có giá trị bằng:

Xem chi tiết

Bài 3 trang 26

Tích phân \(I = \int\limits_0^1 {\frac{{{3^x}}}{2}dx} \) có giá trị bằng: A. \( - \frac{1}{{\ln 3}}\) B. \(\frac{1}{{\ln 3}}\) C. -1 D. 1

Xem chi tiết

Bài 4 trang 26

Cho \(\int\limits_{ - 2}^3 {f(x)dx} = - 10\), \(F(x)\) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)

Xem chi tiết

Bài 7 trang 27

a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi (t in [a;b]). Hãy giải thích vì sao (intlimits_a^b {v(t)dt} ) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây) b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm (t = frac{{3pi }}{4}) (s)

Xem chi tiết

Bài 8 trang 27

Một vật chuyển động với vận tốc được cho bởi đồ thị ở Hình 9. a) Tính quãng đường mà vật di chuyển được trong 1 giây đầu tiên b) Tính quãng đường mà vật di chuyển được trong 2 giây đầu tiên

Xem chi tiết

Bài 9 trang 27

Ở nhiệt độ (37^circ C), một phản ứng hóa học từ chất đầu A, chuyển hóa thành sản phẩm B theo phương trình: (A to B). Giả sử y(x) là nồng độ chất A (đơn vị mol ({L^{ - 1}})) tại thời gian x (giây), y(x) > 0 với (x ge 0), thỏa mãn hệ thức (y'(x) = - {7.10^{ - 4}}y(x)) với (x ge 0). Biết rằng tại x = 0, nồng độ (đầu) của A là 0,05 mol ({L^{ - 1}}). a) Xét hàm số (f(x) = ln y(x)) với (x ge 0). Hãy tính f’(x), từ đó hãy tìm hàm số f(x) b) Giả sử tính nồng độ trung bình chất

Xem chi tiết

Bài 6 trang 27

Tính: a) (intlimits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} ) b) (intlimits_1^2 {frac{1}{{{x^4}}}dx} ) c) (intlimits_1^4 {frac{1}{{xsqrt x }}dx} ) d) (intlimits_0^{frac{pi }{2}} {(4sin x + 3cos x)dx} ) e) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {{{cot }^2}xdx} ) g) (intlimits_0^{frac{pi }{4}} {{{tan }^2}xdx} ) h) (intlimits_{ - 1}^0 {{e^{ - x}}dx} ) i) (intlimits_{ - 2}^{ - 1} {{e^{x + 2}}dx} ) k) (intlimits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx}

Xem chi tiết

Bài 5 trang 27

Cho (intlimits_0^4 {f(x)dx} = 4,intlimits_3^4 {f(x)dx} = 6). Tính (intlimits_0^3 {f(x)dx} )

Xem chi tiết