Giải bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều>
a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi \(t \in [a;b]\). Hãy giải thích vì sao \(\int\limits_a^b {v(t)dt} \) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây) b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm \(t = \frac{{3\pi }}{4}\) (s)
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi \(t \in [a;b]\). Hãy giải thích vì sao \(\int\limits_a^b {v(t)dt} \) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây)
b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm \(t = \frac{{3\pi }}{4}\) (s)
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức đạo hàm của quãng đường là vận tốc
b) Sử dụng định nghĩa tích phân để tính toán
Lời giải chi tiết
a) Vì vận tốc là đạo hàm của quãng đường nên \(\int\limits_a^b {v(t)dt} = \left. {s(t)} \right|_a^b\)
Do đó \(\int\limits_a^b {v(t)dt} \) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b
b) Quãng đường vật di chuyển trong khoảng thời gian đó là:\(s(t) = \int\limits_0^{\frac{{3\pi }}{4}} {v\left( t \right)} dt = \int\limits_0^{\frac{{3\pi }}{4}} {\left( {2--sint} \right)} dt = \left. {\left( {2x + \cos x} \right)} \right|_0^{\frac{{3\pi }}{4}} = \frac{{3\pi }}{2} - \frac{{2 + \sqrt 2 }}{2} \approx 3(m/s)\)
- Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 9 trang 27 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 5 trang 27 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 4 trang 26 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục