Giải bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều>
Tính tích phân (intlimits_2^3 {frac{1}{{{x^2}}}} dx) có giá trị bằng: A. (frac{1}{6}) B. ( - frac{1}{6}) C. (frac{{19}}{{648}}) D. ( - frac{{19}}{{648}})
Đề bài
Tính tích phân \(\int\limits_2^3 {\frac{1}{{{x^2}}}} dx\) có giá trị bằng:
A. \(\frac{1}{6}\)
B. \( - \frac{1}{6}\)
C. \(\frac{{19}}{{648}}\)
D. \( - \frac{{19}}{{648}}\)
Phương pháp giải - Xem chi tiết
Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là nguyên hàm của f(x) trên đoạn [a;b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)} dx\)
Lời giải chi tiết
\(\int\limits_2^3 {\frac{1}{{{x^2}}}} dx = \left. { - \frac{1}{x}} \right|_2^3 = - \frac{1}{3} - \left( { - \frac{1}{2}} \right) = \frac{1}{6}\)
Chọn A
- Giải bài tập 2 trang 26 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 3 trang 26 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 4 trang 26 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục