Giải bài tập 9.8 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức>
Cho tam giác đều ABC nội tiếp đường tròn (O). Biết rằng đường tròn (O) có bán kính bằng 3cm. Tính diện tích tam giác ABC.
Đề bài
Cho tam giác đều ABC nội tiếp đường tròn (O). Biết rằng đường tròn (O) có bán kính bằng 3cm. Tính diện tích tam giác ABC.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Vì tam giác ABC đều nội tiếp đường tròn (O) nên O là trọng tâm, trực tâm của tam giác ABC.
+ Gọi H là giao điểm của AO và BC nên AH là trung trực đồng thời là đường cao trong tam giác đều ABC. Do đó: \(OA = \frac{{BC\sqrt 3 }}{3}\), từ đó tính được BC.
+ Diện tích tam giác ABC: \(S = \frac{1}{2}AH.BC\).
Lời giải chi tiết
Vì tam giác ABC đều nội tiếp đường tròn (O) nên O là trọng tâm, trực tâm của tam giác ABC.
Gọi H là giao điểm của AO và BC nên AH là trung trực đồng thời là đường cao, đường trung tuyến trong tam giác đều ABC.
Do đó: \(OA = \frac{{BC\sqrt 3 }}{3} \Rightarrow BC = \sqrt 3 OA = 3\sqrt 3 \left( {cm} \right)\)
Vì O là trọng tâm của tam giác ABC, AH là đường trung tuyến của tam giác ABC nên \(AH = \frac{3}{2}OA = \frac{3}{2}.3 = \frac{9}{2}\left( {cm} \right)\)
Diện tích tam giác ABC là:
\(S = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3 = \frac{{27\sqrt 3 }}{4}\left( {c{m^2}} \right)\)
- Giải bài tập 9.9 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.10 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.11 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.12 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.7 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục