Giải bài tập 7.15 trang 39 SGK Toán 9 tập 2 - Cùng khám phá>
Tính chu vi của đường tròn nội tiếp và đường tròn ngoại tiếp tam giác đều ABC có cạnh bằng \(3\sqrt 2 \) cm. Diện tích của các hình tròn là bao nhiêu?
Đề bài
Tính chu vi của đường tròn nội tiếp và đường tròn ngoại tiếp tam giác đều ABC có cạnh bằng \(3\sqrt 2 \) cm. Diện tích của các hình tròn là bao nhiêu?
Phương pháp giải - Xem chi tiết
Bán kính đường tròn nội tiếp của tam giác đều bằng \(\frac{{a\sqrt 3 }}{6}\).
Chu vi đường tròn nội tiếp của tam giác đều là C = \(2\pi r\)
Diện tích đường tròn nội tiếp của tam giác đều là S = \(\pi {r^2}\)
Bán kính đường tròn ngoại tiếp của tam giác đều bằng \(\frac{{a\sqrt 3 }}{3}\).
Chu vi đường tròn ngoại tiếp của tam giác đều là C = \(2\pi R\)
Diện tích đường tròn nội tiếp của tam giác đều là S = \(\pi {R^2}\)
Lời giải chi tiết
Bán kính đường tròn nội tiếp của tam giác đều bằng \(\frac{{3\sqrt 2 .\sqrt 3 }}{6} = \frac{{\sqrt 6 }}{2}\)cm.
Chu vi đường tròn nội tiếp của tam giác đều là:
C = \(2\pi .\frac{{\sqrt 6 }}{2} = \sqrt 6 \pi \) \(c{m^2}\)
Diện tích đường tròn nội tiếp của tam giác đều là:
S = \(\pi {\left( {\frac{{\sqrt 6 }}{2}} \right)^2} = \frac{3}{2}\pi \)\(c{m^2}\)
Bán kính đường tròn ngoại tiếp của tam giác đều bằng \(\frac{{3\sqrt 2 .\sqrt 3 }}{3} = \sqrt 6 \)cm.
Chu vi đường tròn ngoại tiếp của tam giác đều là:
C = \(2\sqrt 6 \pi \)cm
Diện tích đường tròn nội tiếp của tam giác đều là:
S = \(\pi {(\sqrt 6 )^2} = 6\pi \)\(c{m^2}\)
- Giải bài tập 7.16 trang 39 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 7.17 trang 39 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 7.18 trang 39 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 7.19 trang 39 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 7.20 trang 39 SGK Toán 9 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá