Giải bài tập 3 trang 100 SGK Toán 9 tập 1 - Cánh diều>
Cho đoạn thẳng (MN) và đường thẳng (a) là đường trung trực của đoạn thẳng (MN). Điểm (O) thuộc đường thẳng (a). a) Vẽ đường tròn tâm (O) bán kính (R = OM). b) Chứng minh điểm (N) thuộc đường tròn (left( {O;R} right)).
Đề bài
Cho đoạn thẳng \(MN\) và đường thẳng \(a\) là đường trung trực của đoạn thẳng \(MN\). Điểm \(O\) thuộc đường thẳng \(a\).
a) Vẽ đường tròn tâm \(O\) bán kính \(R = OM\).
b) Chứng minh điểm \(N\) thuộc đường tròn \(\left( {O;R} \right)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào tính chất đối xứng của đường tròn để chứng minh.
Lời giải chi tiết
a)
b) Do \(O\) thuộc đường trung trực của \(MN\) nên \(OM = ON\).
Lại có \(OM = R\) suy ra \(ON = R\).
Vậy điểm \(N\) thuộc đường tròn \(\left( {O;R} \right)\).
- Giải bài tập 4 trang 100 SGK Toán 9 tập 1 - Cánh diều
- Giải bài tập 5 trang 100 SGK Toán 9 tập 1 - Cánh diều
- Giải bài tập 6 trang 100 SGK Toán 9 tập 1 - Cánh diều
- Giải bài tập 7 trang 100 SGK Toán 9 tập 1 - Cánh diều
- Giải bài tập 2 trang 100 SGK Toán 9 tập 1 - Cánh diều
>> Xem thêm