Giải bài tập 2.17 trang 41 SGK Toán 9 tập 1 - Kết nối tri thức


Giải các bất phương trình sau: a) (3x + 2 > 2x + 3;) b) (5x + 4 < - 3x - 2.)

Đề bài

Giải các bất phương trình sau:

a) \(3x + 2 > 2x + 3;\)

b) \(5x + 4 <  - 3x - 2.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Cần đưa các phương trình đã cho về dạng bất phương trình bậc nhất một ẩn(thông qua tính chất của bất đẳng thức đối với phép cộng và phép nhân, rồi giải như sau

\(\begin{array}{l}ax + b < 0\\ax <  - b.\end{array}\)

Nếu \(a > 0\) thì \(x < \frac{{ - b}}{a}.\)

Nếu \(a < 0\) thì \(x > \frac{{ - b}}{a}.\)

Các bất phương trình \(ax + b > 0;ax + b \le 0;ax + b \ge 0\) giải tương tự.

Lời giải chi tiết

a) \(3x + 2 > 2x + 3;\)

Ta có \(3x + 2 > 2x + 3\) nên \(3x - 2x > 3 - 2\) suy ra \(x > 1\)

Vậy bất phương trình có nghiệm \(x > 1.\)

b) \(5x + 4 <  - 3x - 2.\)

Ta có \(5x + 4 <  - 3x - 2\) nên \(5x + 3x <  - 2 - 4\) hay \(8x <  - 6\) suy ra \(x < \frac{{ - 3}}{4}.\)

Vậy bất phương trình có nghiệm \(x < \frac{{ - 3}}{4}.\)


Bình chọn:
3.7 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí