Giải bài tập 16 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo


Đề bài: Phần mềm của máy tiện kĩ thuật số CNC (Computer Numerical Control) đang biểu diễn một chi tiết máy như hình dưới đây. a) Tìm toạ độ các điểm \(A\), \(B\), \(C\), \(D\). b) Viết phương trình mặt phẳng \(\left( {ABC} \right)\) và mặt phẳng \(\left( {ACD} \right)\). c) Viết phương trình tham số của đường thẳng \(AC\). d) Cho biết đầu mũi tiện đang đặt tại điểm \(M\left( {0;60;40} \right)\). Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {ABC} \right)\).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Đề bài:

Phần mềm của máy tiện kĩ thuật số CNC (Computer Numerical Control) đang biểu diễn một chi tiết máy như hình dưới đây.

a) Tìm toạ độ các điểm \(A\), \(B\), \(C\), \(D\).

b) Viết phương trình mặt phẳng \(\left( {ABC} \right)\) và mặt phẳng \(\left( {ACD} \right)\).

c) Viết phương trình tham số của đường thẳng \(AC\).

d) Cho biết đầu mũi tiện đang đặt tại điểm \(M\left( {0;60;40} \right)\). Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {ABC} \right)\).

Phương pháp giải - Xem chi tiết

a) Nhìn vào hình vẽ, xác định toạ độ các điểm \(A\), \(B\), \(C\), \(D\).

b) Mặt phẳng \(\left( {ABC} \right)\) có cặp vectơ chỉ phương \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) nên một vectơ pháp tuyến của \(\left( {ABC} \right)\) là \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\), từ đó viết phương trình mặt phẳng \(\left( {ABC} \right)\).

Mặt phẳng \(\left( {ACD} \right)\) có cặp vectơ chỉ phương \(\overrightarrow {AC} \) và \(\overrightarrow {AD} \) nên một vectơ pháp tuyến của \(\left( {ACD} \right)\) là \(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right]\), từ đó viết phương trình mặt phẳng \(\left( {ACD} \right)\).

c) Đường thẳng \(AC\) có \(\overrightarrow {AC} \) là một vectơ chỉ phương, từ đó viết phương trình tham số của đường thẳng \(AC\).

d) Sử dụng công thức tính khoảng cách để tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABC} \right)\).

Lời giải chi tiết

a) Dựa vào hình vẽ, ta có \(A\left( {70;0;0} \right)\), \(B\left( {70;0; - 60} \right)\), \(C\left( {70;80;0} \right)\) và \(D\left( {50;0;0} \right)\).

b) Mặt phẳng \(\left( {ABC} \right)\) có cặp vectơ chỉ phương \(\overrightarrow {AB}  = \left( {0;0; - 60} \right)\) và \(\overrightarrow {AC}  = \left( {0;80;0} \right)\) nên một vectơ pháp tuyến của \(\left( {ABC} \right)\) là \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {4800;0;0} \right)\). Ta suy ra \(\vec i = \left( {1;0;0} \right) = \frac{1}{{4800}}\overrightarrow {{n_1}} \) cũng là một vectơ pháp tuyến của \(\left( {ABC} \right)\).

Vậy phương trình mặt phẳng \(\left( {ABC} \right)\) là \(1\left( {x - 70} \right) + 0\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0\), hay \(x - 70 = 0\).

Mặt phẳng \(\left( {ACD} \right)\) có cặp vectơ chỉ phương \(\overrightarrow {AC}  = \left( {0;80;0} \right)\) và \(\overrightarrow {AD}  = \left( { - 20;0;0} \right)\) nên một vectơ pháp tuyến của \(\left( {ACD} \right)\) là \(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1600} \right)\). Ta suy ra \(\vec k = \left( {0;0;1} \right) = \frac{1}{{1600}}\overrightarrow {{n_2}} \) cũng là một vectơ pháp tuyến của \(\left( {ACD} \right)\).

Vậy phương trình mặt phẳng \(\left( {ACD} \right)\) là \(0\left( {x - 70} \right) + 0\left( {y - 0} \right) + 1\left( {z - 0} \right) = 0\), hay \(z = 0\).

c) Ta có \(\overrightarrow {AC}  = \left( {0;80;0} \right)\) là một vectơ chỉ phương của đường thẳng \(AC\). Ta suy ra vectơ \(\vec j = \left( {0;1;0} \right) = \frac{1}{{80}}\overrightarrow {AC} \) cũng là một vectơ chỉ phương của \(AC\)

Vậy phương trình tham số của \(AC\) là \(\left\{ \begin{array}{l}x = 70 + 0t\\y = 0 + t\\z = 0 + 0t\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 70\\y = t\\z = 0\end{array} \right.\).

d) Khoảng cách từ điểm \(M\) đến \(\left( {ABC} \right)\) là

\(d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {1.0 + 0.60 + 0.40 - 70} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 70.\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho hình hộp chữ nhật (OABC.O'A'B'C'), với (O) là gốc toạ độ, (Aleft( {2;0;0} right)), (Cleft( {0;6;0} right)), (O'left( {0;0;4} right)). Viết phương trình: a) Mặt phẳng (left( {O'AC} right)) b) Đường thẳng (CO') c) Mặt cầu đi qua các đỉnh của hình hộp.

  • Giải bài tập 18 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho ba điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;2;0} \right)\) và \(C\left( {0;0;3} \right)\). Chứng minh rằng nếu điểm \(M\left( {x,y,z} \right)\) thoả mãn \(M{A^2} = M{B^2} + M{C^2}\) thì \(M\) thuộc một mặt cầu \(\left( S \right)\). Tìm tâm và bán kính của \(\left( S \right)\).

  • Giải bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( P \right):x - y - 6 = 0\) và \(\left( Q \right)\). Biết rằng điểm \(H\left( {2; - 1; - 2} \right)\) là hình chiếu vuông góc của gốc toạ độ \(O\left( {0;0;0} \right)\) xuống mặt phẳng \(\left( Q \right)\). Tính góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\).

  • Giải bài tập 14 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Phần mềm điều khiển máy in 3D cho biết đầu in phun của máy đang đặt tại điểm \(M\left( {3;4;24} \right)\) (đơn vị: cm). Tính khoảng cách từ đầu in đến khay đặt vật in có phương trình \(z - 4 = 0\).

  • Giải bài tập 13 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho bốn điểm \(A\left( { - 2;6;3} \right)\), \(B\left( {1;0;6} \right)\), \(C\left( {0;2; - 1} \right)\), \(D\left( {1;4;0} \right)\). a) Viết phương trình mặt phẳng \(\left( {BCD} \right)\). Suy ra \(ABCD\) là một tứ diện. b) Tính chiều cao \(AH\) của tứ diện \(ABCD\). c) Viết phương trình mặt phẳng \(\left( \alpha \right)\) chứa \(AB\) và song song với \(CD\).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí