Giải bài tập 1 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo


Cho mặt phẳng \(\left( P \right):x + 2y + 3z - 1 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\)? A. \(\overrightarrow {{n_1}} = \left( {1;3; - 1} \right)\) B. \(\overrightarrow {{n_2}} = \left( {2;3; - 1} \right)\) C. \(\overrightarrow {{n_3}} = \left( {1;2; - 1} \right)\) D. \(\overrightarrow {{n_4}} = \left( {1;2;3} \right)\)

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho mặt phẳng

\(\left( P \right):x + 2y + 3z - 1 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\)?

A. \(\overrightarrow {{n_1}}  = \left( {1;3; - 1} \right)\)

B. \(\overrightarrow {{n_2}}  = \left( {2;3; - 1} \right)\)

C. \(\overrightarrow {{n_3}}  = \left( {1;2; - 1} \right)\)

D. \(\overrightarrow {{n_4}}  = \left( {1;2;3} \right)\)

Phương pháp giải - Xem chi tiết

Dựa vào phương trình mặt phẳng, chỉ ra một vectơ pháp tuyến của .

Lời giải chi tiết

Một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\vec n = \left( {1;2;3} \right)\).

Vậy đáp án đúng là D.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 2 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Phương trình nào dưới đây là phương trình của mặt phẳng \(\left( {Oyz} \right)\)? A. \(y = 0\) B. \(x = 0\) C. \(y - z = 0\) D. \(z = 0\)

  • Giải bài tập 3 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 3} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {1; - 2;3} \right)\)? A. \(x - 2y + 3z - 12 = 0\) B. \(x - 2y - 3z + 6 = 0\) C. \(x - 2y + 3z + 12 = 0\) D. \(x - 2y - 3z - 6 = 0\)

  • Giải bài tập 4 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho mặt phẳng \(\left( P \right):3x + 4y + 2z + 4 = 0\) và điểm \(A\left( {1; - 2;3} \right)\). Khoảng cách từ \(A\) đến \(\left( P \right)\) bằng A. \(\frac{5}{{\sqrt {29} }}\) B. \(\frac{5}{{29}}\) C. \(\frac{{\sqrt 5 }}{3}\) D. \(\frac{5}{9}\)

  • Giải bài tập 5 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho ba mặt phẳng \(\left( \alpha \right):x + y + 2z + 1 = 0\), \(\left( \beta \right):x + y - z + 2 = 0\) và \(\left( \gamma \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\) B. \(\left( \gamma \right) \bot \left( \beta \right)\) C. \(\left( \alpha \right)\parallel \left( \beta \right)\) D. \(\left( \alpha \right) \bot \left( \gamma \right)\)

  • Giải bài tập 6 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\). Vectơ nào sau đây là một vectơ chỉ phương của \(d\)? A. \(\overrightarrow {{u_1}} = \left( {2;1; - 3} \right)\) B. \(\overrightarrow {{u_2}} = \left( { - 2; - 1;3} \right)\) C. \(\overrightarrow {{u_3}} = \left( { - 1;2;1} \right)\) D. \(\overrightarrow {{u_4}} = \left( { - 1;2; - 1} \right)\)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí