Giải bài 7.49 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Thể tích khối tứ diện ABC’D’ bằng

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Thể tích khối tứ diện ABC’D’ bằng

A. \(\frac{{{a^3}}}{3}\).

B. \(\frac{{{a^3}}}{2}\).

C. \(\frac{{{a^3}}}{6}\).

D. \(\frac{{2{a^3}}}{3}\).

Phương pháp giải - Xem chi tiết

Cách 1: Tính thể tích phần bù

Ta có \({V_{ACB'D'}} = {V_{ABCD.A'B'C'D'}} \)

\(-\left( {{V_{B'.ABC}} + {V_{C.B'C'D'}} + {V_{D'.ACD}} + {V_{A.A'B'D'}}} \right)\).

Mà \({V_{ABCD.A'B'C'D'}} = {a^3}\), và:

\({V_{B'.ABC}} = {V_{C.B'C'D'}} = {V_{D'.ACD}} = {V_{A.A'B'D'}} \)

\(= \frac{1}{3}.A'A.{S_{A'B'D'}} = \frac{1}{3}.a.\frac{1}{2}{a^2} = \frac{1}{6}{a^3}\).

\( \Rightarrow {V_{ACB'D'}}\).

Cách 2: Sử dụng công thức:

\({V_{ACB'D'}} = \frac{1}{6}AC.B'D'.d\left( {AC,B'D'} \right).\sin \left( {AC,B'D'} \right)\).

Lời giải chi tiết

Cách 1:

Ta có \({V_{ACB'D'}} = {V_{ABCD.A'B'C'D'}} - \left( {{V_{B'.ABC}} + {V_{C.B'C'D'}} + {V_{D'.ACD}} + {V_{A.A'B'D'}}} \right)\).

Mà \({V_{ABCD.A'B'C'D'}} = {a^3}\) và \({V_{B'.ABC}} = {V_{C.B'C'D'}} = {V_{D'.ACD}} = {V_{A.A'B'D'}} = \frac{1}{3}.A'A.{S_{A'B'D'}}\)

\(= \frac{1}{3}.a.\frac{1}{2}{a^2} = \frac{1}{6}{a^3}\).

Do đó \({V_{ACB'D'}} = {a^3} - \frac{4}{6}{a^3} = \frac{{{a^3}}}{3}\).

Cách 2: Sử dụng công thức \({V_{ACB'D'}} = \frac{1}{6}AC.B'D'.d\left( {AC,B'D'} \right).\sin \left( {AC,B'D'} \right)\).

\({V_{ACB'D'}} = \frac{1}{6}a\sqrt 2 .a\sqrt 2 .a.\sin {90^ \circ } = \frac{{{a^3}}}{3}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí