Giải bài 41 trang 83 sách bài tập toán 11 - Cánh diều


Hàm số \(y = \tan x\) gián đoạn tại bao nhiêu điểm trên khoảng \(\left( {0;2\pi } \right)\)?

Đề bài

Hàm số \(y = \tan x\) gián đoạn tại bao nhiêu điểm trên khoảng \(\left( {0;2\pi } \right)\)?

A. 0                               

B. 1                     

C. 2                     

D. 3

Phương pháp giải - Xem chi tiết

Hàm số \(y = \tan x\) liên tục trên từng khoảng xác định. Hàm số có tập xác định là \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\). Tìm những giá trị làm cho hàm số không xác định trên khoảng \(\left( {0,2\pi } \right)\)

Lời giải chi tiết

Hàm số \(y = \tan x\) liên tục trên từng khoảng xác định. Hàm số có tập xác định là \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\). Như vậy, hàm số gián đoạn tại những điểm \(x = \frac{\pi }{2} + k\pi \).

Suy ra, trên khoảng \(\left( {0,2\pi } \right)\), hàm số gián đoạn tại hai điểm \(x = \frac{\pi }{2}\) và \(x = \frac{{3\pi }}{2}\).

Đáp án đúng là C.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí