Giải bài 37 trang 18 sách bài tập toán 12 - Cánh diều


Giá trị nhỏ nhất (m), giá trị lớn nhất (M) của hàm số (y = xsqrt {4 - {x^2}} ) lần lượt bằng: A. (m = 0,M = 2). B. (m = - 2,M = 2). C. (m = - 2,M = 0). D. (m = 0,M = 4).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Giá trị nhỏ nhất \(m\), giá trị lớn nhất \(M\) của hàm số \(y = x\sqrt {4 - {x^2}} \) lần lượt bằng:

A. \(m = 0,M = 2\).    

B. \(m =  - 2,M = 2\). 

C. \(m =  - 2,M = 0\). 

D. \(m = 0,M = 4\).

Phương pháp giải - Xem chi tiết

Tìm tập xác định của hàm số, sau đó tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn.

Lời giải chi tiết

Hàm số có tập xác định là \(\left[ { - 2;2} \right]\).

Ta có: \(y' = {\left( x \right)^\prime }.\sqrt {4 - {x^2}}  + x.{\left( {\sqrt {4 - {x^2}} } \right)^\prime } = \sqrt {4 - {x^2}}  + x.\frac{{ - {\rm{x}}}}{{\sqrt {4 - {x^2}} }} = \frac{{4 - 2{{\rm{x}}^2}}}{{\sqrt {4 - {x^2}} }}\)

Khi đó, trên đoạn \(\left[ { - 2;2} \right]\), \(y' = 0\) khi \(x =  - \sqrt 2 \) hoặc \(x = \sqrt 2 \).

\(y\left( { - 2} \right) = 0;y\left( { - \sqrt 2 } \right) =  - 2;y\left( {\sqrt 2 } \right) = 2;y\left( 2 \right) = 0\).

Vậy \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} y =  - 2\) tại \(x =  - \sqrt 2 \); \(\mathop {\max }\limits_{\left[ { - 2;2} \right]} y = 2\) tại \(x = \sqrt 2 \).

Chọn B.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 38 trang 18 sách bài tập toán 12 - Cánh diều

    Biết giá trị lớn nhất của hàm số (y = frac{{{{left( {ln x} right)}^2}}}{x}) trên đoạn (left[ {1;{e^3}} right]) là (M = frac{a}{{{e^b}}}), trong đó (a,b) là các số tự nhiên. Khi đó ({a^2} + 2{b^3}) bằng: A. 22. B. 24. C. 32. D. 135.

  • Giải bài 39 trang 18 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {x^2}.ln x). a) (y' = 2{rm{x}}.ln {rm{x}}). b) (y' = 0) khi (x = 1). c) (yleft( {frac{1}{{sqrt e }}} right) = - frac{1}{{2{rm{e}}}}). d) Giá trị nhỏ nhất của hàm số trên đoạn (left[ {frac{1}{e};e} right]) bằng ( - frac{1}{{2{rm{e}}}}).

  • Giải bài 40 trang 19 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Bác Lâm muốn gò một cái thùng bằng tôn dạng hình hộp chữ nhật không nắp có đáy là hình vuông và đựng đầy được 32 lít nước. Gọi độ dài cạnh đáy của thùng là (xleft( {dm} right)), chiều cao của thùng là (hleft( {dm} right)). a) Thể tích của thùng là (V = {x^.}^2.hleft( {d{m^3}} right)). b) Tổng diện tích xung quanh và diện tích đáy của thùng là: (S = 4xh + {x^2}left( {d{m^2}} right)). c) Đạo hàm của hàm số (Sle

  • Giải bài 41 trang 19 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của mỗi hàm số sau: a) \(y = - \frac{{{x^3}}}{3} - {x^2} + 3{\rm{x}} + 1\) trên khoảng \(\left( {0;3} \right)\); b) \(y = {x^4} - 8{x^2} + 10\) trên khoảng \(\left( { - \sqrt 7 ;\sqrt 7 } \right)\); c) \(y = \frac{{{x^2} - 1}}{{{x^2} + 1}}\); d) \(y = x + \frac{4}{{x - 1}}\) trên khoảng \(\left( { - \infty ;1} \right)\).

  • Giải bài 42 trang 19 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = 2{x^3} + 3{{\rm{x}}^2} - 12{\rm{x}} + 1\) trên đoạn \(\left[ { - 1;5} \right]\); b) \(y = {\left( {x - \sqrt 2 } \right)^2}.{\left( {x + \sqrt 2 } \right)^2}\) trên đoạn \(\left[ { - \frac{1}{2};2} \right]\); c) \(y = {x^5} - 5{{\rm{x}}^4} + 5{{\rm{x}}^3} + 1\) trên đoạn \(\left[ { - 1;2} \right]\); d) \(y = x + \frac{4}{x}\) trên đoạn \(\left[ {3;4} \right]\); e) \(y = \sqrt {x - 1} + \sqrt {3 - x} \); g) \(y = x\sqrt

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí