Giải bài 30 trang 100 sách bài tập toán 11 - Cánh diều


Cho hình chóp \(S.ABCD\) có \(AC\) cắt \(BD\) tại \(O\).

Đề bài

Cho hình chóp \(S.ABCD\) có \(AC\) cắt \(BD\) tại \(O\). Gọi \(\alpha \), \(\beta \) lần lượt là số đo của các góc nhị diện \(\left[ {A,SO,B} \right]\) và \(\left[ {B,SO,C} \right]\). Tính \(\alpha  + \beta \).

Phương pháp giải - Xem chi tiết

Gọi \(P\) là hình chiếu của \(A\) trên \(SO\). Trên \(\left( {SAC} \right)\), gọi \(M\) là giao điểm của \(SC\) và \(AP\). Trên \(\left( {SBD} \right)\), kẻ \(NP \bot SO\) với \(N \in SB\). Chứng minh được \(\widehat {APN}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SO,B} \right]\) và \(\widehat {NPM}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SO,C} \right]\), từ đó tính được \(\alpha  + \beta \).

Lời giải chi tiết

Gọi \(P\) là hình chiếu của \(A\) trên \(SO\). Trên \(\left( {SAC} \right)\), gọi \(M\) là giao điểm của \(SC\) và \(AP\). Trên \(\left( {SBD} \right)\), kẻ \(NP \bot SO\) với \(N \in SB\).

Dễ thấy rằng 4 điểm \(A\), \(P\), \(M\), \(N\) đồng phẳng.

Vì \(AP \bot SO\), \(NP \bot SO\) nên góc \(\widehat {APN}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SO,B} \right]\), tức là \(\alpha  = \widehat {APN}\).

Chứng minh tương tự, ta có \(\beta  = \widehat {NPM}\)

Suy ra \(\alpha  + \beta  = \widehat {APN} + \widehat {NPM} = \widehat {APM}\). Mặt khác, do \(A\), \(P\), \(M\) thẳng hàng, nên ta có \(\widehat {APM} = {180^o}\).

Như vậy \(\alpha  + \beta  = {180^o}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí